
Dynamic Programming
a. Fibonacci Series
b. Weighted Interval Scheduling
c. Knapsack
d. Longest Common Subsequence
e. Longest Increasing Subsequence
f. Edit Distance



Edit Distance

• Input: two string A[1...n] and B[1...m]
• Output: minimum number of letter insertions, 

letter deletions, and letter substitutions required to 
transform one string into the other.



Edit Distance

• We can visualize this editing process by aligning the strings one 
above the other:
• a gap in the first word for each insertion
• a gap in the second word for each deletion
• columns with two different characters correspond to substitutions 



Writing the Recurrence

• Let Edit 𝑖, 𝑗  be the minimum number of edits to turn 
A[1...i] into B[1...j].
• Consider the last column of the visualization:

• Case 𝟏: the last element in the top row is empty
• This is an insertion to the first string.
• In this case Edit 𝑖, 𝑗 = Edit 𝑖, 𝑗 − 1 + 1.



Writing the Recurrence

• Case 𝟐: the last element in the bottom row is empty
• This is a deletion from the first string.
• In this case Edit 𝑖, 𝑗 = Edit 𝑖 − 1, 𝑗 + 1.



Writing the Recurrence

• Case 𝟑: both rows have characters in the last column
• If the last characters are the same, then 

Edit 𝑖, 𝑗 = Edit 𝑖 − 1, 𝑗 − 1
• If the last characters are different, then we need substitution:

Edit 𝑖, 𝑗 = Edit 𝑖 − 1, 𝑗 − 1 + 1



Writing the Recurrence

• Base Case:
• Edit 𝑖, 0 = 𝑖
• Edit 0, 𝑗 = j



Compute Edit (i,j) for each subproblem of x=peat and y=leapt
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• Base Case:
• Edit 𝑖, 0 = 𝑖
• Edit 0, 𝑗 = j
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Dynamic Programming Recipe

• Recipe:
(1) identify a set of subproblems

(2) relate the subproblems via a recurrence
(3) find an efficient implementation of the 
recurrence (top down or bottom up)

(4) reconstruct the solution from the DP table



Interval Scheduling

• Input: 𝑛 intervals 𝑠! , 𝑓!  each with value 𝑣!
• Assume intervals are sorted so 𝑓! < 𝑓" < ⋯ < 𝑓#

• Output: a compatible schedule 𝑆 maximizing the 
total value of all intervals
• A schedule is a subset of intervals 𝑆 ⊆ {1,… , 𝑛} 
• A schedule 𝑆 is compatible if no 𝑖, 𝑗 ∈ 𝑆 overlap
• The total value of 𝑆 is ∑$∈& 𝑣$



Interval Scheduling



Subproblems

• Subproblems: Let 𝑂!  be the optimal schedule using 
only the intervals 1,… , 𝑖



Relating the Subproblems

• Subproblems: Let 𝑂!  be the optimal schedule using 
only the intervals 1,… , 𝑖
• Case 1: Final interval is not in	𝑂!  (𝑖 ∉ 𝑂!)
• Then	𝑂$ must be the optimal solution for 1,… , 𝑖 − 1
• 𝑂!  = 𝑂!"# 

• Case 2: Final interval is in 𝑂!  (𝑖 ∈ 𝑂!)
• Assume intervals are sorted so that 𝑓! < 𝑓" < ⋯ < 𝑓#
• Let 𝑝 𝑖  be the largest 𝑗 such that 𝑓' < 𝑠$
• Then	𝑂$ must be 𝑖 + the optimal solution for 1,… , 𝑝 𝑖
• 𝑂!  = 𝑖 + 	𝑂$(!)



A Recursive Formulation

• Subproblems: Let 𝑂𝑃𝑇(𝑖) be the value of the optimal schedule 
using only the intervals 1,… , 𝑖    

• 𝑂𝑃𝑇 𝑖 = max 𝑂𝑃𝑇 𝑖 − 1 , 𝑣+ + 𝑂𝑃𝑇 𝑝 𝑖

• 𝑂𝑃𝑇 0 = 0, 𝑂𝑃𝑇 1 = 𝑣,



Top-down Recipe 
FindOpt(subproblem s):

 if (s is a base case):
  1-Find the solution directly with no recursion
  2-Return the solution.

 if you already have the solution memorized:
  1-Return the solution.

 else:
  1-Identify the subproblems needed for solving s.
  2-Recursively call FindOpt on these subprobelms.
  3-Solve s using these results.
 4-Store the solution for s in an array.(memorize)
  5-Return the solution.



Buttom-up Recipe 
FindOpt():   
 Let M be an array for storing the values of the 
  optimal solutions for all the subproblems.

 Initialize M with the value for the base cases.

 Iterate over subproblems starting from the smallest:
  1- Find the value for the subproblems using the       
jjjjjj recursive formula and the value of the smaller      
kkkkkk subproblems stored in M.
  2-Store the value in array M. 
 
 Return the solution based on M.
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