
Dynamic Programming
a. Fibonacci Series
b. Weighted Interval Scheduling
c. Knapsack
d. Longest Common Subsequence
e. Longest Increasing Subsequence
f. Edit Distance

Edit Distance

• Input: two string A[1...n] and B[1...m]
• Output: minimum number of letter insertions,

letter deletions, and letter substitutions required to
transform one string into the other.

Edit Distance

• We can visualize this editing process by aligning the strings one
above the other:
• a gap in the first word for each insertion
• a gap in the second word for each deletion
• columns with two different characters correspond to substitutions

Writing the Recurrence

• Let Edit 𝑖, 𝑗 be the minimum number of edits to turn
A[1...i] into B[1...j].
• Consider the last column of the visualization:

• Case 𝟏: the last element in the top row is empty
• This is an insertion to the first string.
• In this case Edit 𝑖, 𝑗 = Edit 𝑖, 𝑗 − 1 + 1.

Writing the Recurrence

• Case 𝟐: the last element in the bottom row is empty
• This is a deletion from the first string.
• In this case Edit 𝑖, 𝑗 = Edit 𝑖 − 1, 𝑗 + 1.

Writing the Recurrence

• Case 𝟑: both rows have characters in the last column
• If the last characters are the same, then

Edit 𝑖, 𝑗 = Edit 𝑖 − 1, 𝑗 − 1
• If the last characters are different, then we need substitution:

Edit 𝑖, 𝑗 = Edit 𝑖 − 1, 𝑗 − 1 + 1

Writing the Recurrence

• Base Case:
• Edit 𝑖, 0 = 𝑖
• Edit 0, 𝑗 = j

Compute Edit (i,j) for each subproblem of x=peat and y=leapt

- l e a p t

-

p

e

a

t

j = 0 1 2 3 4 5

i = 0

1

2

3

4

• Base Case:
• Edit 𝑖, 0 = 𝑖
• Edit 0, 𝑗 = j

Dynamic Programming
a. Fibonacci Series
b. Weighted Interval Scheduling
c. Knapsack
d. Longest Common Subsequence
e. Longest Increasing Subsequence
f. Edit Distance
g. Wrap Up

Dynamic Programming Recipe

• Recipe:
(1) identify a set of subproblems

(2) relate the subproblems via a recurrence
(3) find an efficient implementation of the
recurrence (top down or bottom up)

(4) reconstruct the solution from the DP table

Interval Scheduling

• Input: 𝑛 intervals 𝑠! , 𝑓! each with value 𝑣!
• Assume intervals are sorted so 𝑓! < 𝑓" < ⋯ < 𝑓#

• Output: a compatible schedule 𝑆 maximizing the
total value of all intervals
• A schedule is a subset of intervals 𝑆 ⊆ {1,… , 𝑛}
• A schedule 𝑆 is compatible if no 𝑖, 𝑗 ∈ 𝑆 overlap
• The total value of 𝑆 is ∑$∈& 𝑣$

Interval Scheduling

Subproblems

• Subproblems: Let 𝑂! be the optimal schedule using
only the intervals 1,… , 𝑖

Relating the Subproblems

• Subproblems: Let 𝑂! be the optimal schedule using
only the intervals 1,… , 𝑖
• Case 1: Final interval is not in	𝑂! (𝑖 ∉ 𝑂!)
• Then	𝑂$ must be the optimal solution for 1,… , 𝑖 − 1
• 𝑂! = 𝑂!"#

• Case 2: Final interval is in 𝑂! (𝑖 ∈ 𝑂!)
• Assume intervals are sorted so that 𝑓! < 𝑓" < ⋯ < 𝑓#
• Let 𝑝 𝑖 be the largest 𝑗 such that 𝑓' < 𝑠$
• Then	𝑂$ must be 𝑖 + the optimal solution for 1,… , 𝑝 𝑖
• 𝑂! = 𝑖 + 	𝑂$(!)

A Recursive Formulation

• Subproblems: Let 𝑂𝑃𝑇(𝑖) be the value of the optimal schedule
using only the intervals 1,… , 𝑖

• 𝑂𝑃𝑇 𝑖 = max 𝑂𝑃𝑇 𝑖 − 1 , 𝑣+ + 𝑂𝑃𝑇 𝑝 𝑖

• 𝑂𝑃𝑇 0 = 0, 𝑂𝑃𝑇 1 = 𝑣,

Top-down Recipe
FindOpt(subproblem s):

 if (s is a base case):
 1-Find the solution directly with no recursion
 2-Return the solution.

 if you already have the solution memorized:
 1-Return the solution.

 else:
 1-Identify the subproblems needed for solving s.
 2-Recursively call FindOpt on these subprobelms.
 3-Solve s using these results.
 4-Store the solution for s in an array.(memorize)
 5-Return the solution.

Buttom-up Recipe
FindOpt():
 Let M be an array for storing the values of the
 optimal solutions for all the subproblems.

 Initialize M with the value for the base cases.

 Iterate over subproblems starting from the smallest:
 1- Find the value for the subproblems using the
jjjjjj recursive formula and the value of the smaller
kkkkkk subproblems stored in M.
 2-Store the value in array M.

 Return the solution based on M.

Dynamic Programming
a. Fibonacci Series
b. Weighted Interval Scheduling
c. Knapsack
d. Longest Common Subsequence
e. Longest Increasing Subsequence
f. Edit Distance
g. Wrap Up
h. Quiz 1 Review

10

9

