Greedy Algorithms
a. Unweighted Interval Scheduling



Interval Scheduling: Problem Definition

* Interval scheduling.
* Job j starts at s, and finishes at f.
* Two jobs compatible if they don't overlap.
* Goal: find maximum subset of mutually compatible jobs.
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Interval Scheduling: Greedy Attempts

* Greedy template: Consider jobs in some natural order.
Take each job provided it's compatible with the ones
already taken.

* [Earliest start time] Consider jobs in ascending order of s;.
* [Earliest finish time] Consider jobs in ascending order of f;.
* [Shortest interval] Consider jobs in ascending order of f; - s..

* [Fewest conflicts] For each job j, count the number of
conflicting jobs c;. Schedule in ascending order of c;.



Interval Scheduling: Greedy Attempts

T == counterexample for earliest start time

counterexample for shortest interval

counterexample for fewest conflicts



Interval Scheduling: Greedy Algorithm

* Greedy algorithm: Consider jobs in increasing order
of finish time. Take each job provided it's compatible
with the ones already taken.

Sort jobs by finish times so that £, < £, < ... <
£..

set of jobs selected

A« ¢
for j =1 to n {
if (job j compatible with A)
A« AU {j}
}

return A




Interval Scheduling: Example
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Interval Scheduling: Example
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Interval Scheduling: Proof

* Theorem. Greedy algorithm is optimal.

* Pf. (by contradiction) greedy-stays-ahead approach
* Assume greedy is not optimal, and let's see what happens.
* Letiy, iy, ... iidenote set of intervals selected by greedy.

* Letj,, jo, ..., denote set of intervals in the optimal solution with
iy =]j1, b=]s, ..., i, =] for the largest possible value of r.

job irs1 finishes before jr.1
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why not replace job jp.1
with job i.1?




Interval Scheduling: Implementation

* Finding the next earliest finishing time of
remaining intervals via linear search:

* O(n2).

» Sorting
 Sort all the requests by finishing time — O(n log n)

* lterate through the sorted array taking the next legal
request — O(n)
* O(nlogn)



Summary

* Scheduling problems are often amenable to greedy
approach

* But there may be many greedy choices and it is
important to select the right one

* Main Takeaway: Greedy-stays-ahead is a useful
proof approach



Greedy Algorithms

b. Minimum Lateness Scheduling



Minimum Lateness Scheduling

* Input: n jobs with length t; and deadline d;
* Simplifying assumption: all deadlines are distinct

* Qutput: a minimum--lateness schedule for the jobs
 Canonlydo one job at atime, no overlap
* The lateness of job i is max{fi— di,0 }
* The lateness of a schedule is max {miax {fi—d;},0}

Length 1 Deadline 2 = MC(?( 1 ‘N\CO( {“’OL‘O(L/O'} %
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Length 2 Deadline 4
Job 2 | | |

Length 3 Deadline 6

Job 3 | | |

Solution: | | |

Job 1: Job 2: Job 3:
done at done at done at
time 1 time1+2=3 time 1+2+3=6




Possible Greedy Rules

* Choose the shortest job first (min &)?
* Choose the most urgent job first (min di— t;)?
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Greedy Algorithm: Earliest Deadline First

e Sortjobssothatdi < d, < - < d,

eFori=1,..,n:
* Schedule job i right after job i — 1finishes
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Exchange Argument
* G = greedy schedule, O = some other schedule

* Exchange Argument:
* We can transform O to G by exchanging pairs of jobs
* No exchange increases the lateness of O
 Therefore, the lateness of G is at most that of O
* (7 has the minimum possible lateness
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Exchange Argument

e G = greedy schedule, O = (supposedly) optimal
schedule

* We say that two jobs i, j are inverted in O if d; < d jbut
J comes before i in the schedule
* Observation: greedy has noinversions



Example: two jobs

* Two jobs with deadlines d; < d, and lengths t,, t,

* Greedy schedule: 1, 2
e 0:2, 1 (inversion)

Lateness of O: max(t, — d,, t; +t, —dy) =t; +t, —d;

Flipping them: max(t, +t, —d,, t; —dq) <t; +t, —dy



Exchange Argument

* We say that two jobs i, j are inverted in O if d; < d;
but j comes before i in O

* Claim: an optimal schedule has no inversions

* Step 1: If O has aninversion, then it hasan inversion i, j
whichare scheduled consecutively in O

* Step 2:if i, j are consecutive jobs that are inverted then
flippingthem only reduces the lateness
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Exchange Argument

* Step 1: If O has an inversion, then it hasan inversion i, j
whichare scheduled consecutively in O

* Take an inversion i, j where i and j are closest in the
schedule O

* By definition, d; > d; but j comes before i
* Suppose there is a job k scheduled between % and j.
* Case 1: dy, < d; i

* In this case j, K is an inversion, contradiction

e Case 2: d,;,, > d LG ¢ CJ 1S 0UN INTeAGhe
k j -

» Since d; > dj, we have d;, > d;
 Therefore, k, i is an inversion, contradiction




Exchange Argument

* Step 2: If i, j are consecutive jobs that are inverted then
flipping them only reduces the lateness

* Does not change the lateness of the other jobs
* Let’s assume these jobs have d; < d; and lengths t;, ¢;

* Assume job j starts at time s in schedule O.

L
Max lateness of § and ® before flipping:
maX(S+tj—d]’,S+tj+ti—di):S+ti+tj—di
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Exchange Argument

* We say that two jobs i, j are inverted in O if d; < d;
but j comes before i in O

* Claim: an optimal schedule has no inversions

* Step 1: If O has an inversion, then it hasan inversion i, j
whichare scheduled consecutively in O

* Step 2:if i, j are consecutive jobs that are inverted then
flippingthem only reduces the lateness

* G is the unique schedule with no inversions,
lateness(G) < lateness(O)



Greedy Algorithms

c. Interval Scheduling — Exchange Argument



(Unweighted) Interval Scheduling

* Input: n intervals (sj, fi)
* Output: a compatible schedule S with the largest

possible size
* Ascheduleis a subset of intervals S € {1, ...,n}
* Aschedule S is compatible if notwo i, j € Soverlap




Greedy Algorithm: Earliest Finish First

* Sort intervals sothat f1 < f,< -+ < fi

* Let S be empty

eFori=1, ..,n:
e |f interval i doesn’t create a conflict, add i to S

e Return S




Exchange Argument

e LetG =1{1iy ..., ir} be greedy’s schedule
* Let O ={j1, ..., js} be some other schedule
* Let k be the first time G and O diverge.

* {in o lg—1} = U o k11

* g # Jk




Exchange Argument

Let G ={ iy, ...,ir} be greedy’s schedule

Let O = {j1, ..., Js} be some other schedule
Let k be the first time G and O diverge.

* {in o lg—1} = U o k11

* g F Jk
* Exchange j, for i in O.




Greedy Algorithms



Fractional Knapsack

* Like Knapsack, except that every item can be cut or divided
into arbitrarily small quantities (e.g., salt, spices)

* n items
* Item i has weight w; and value v;
* Knapsack has weight limit W

 Goal:

e Determine (fractions of) items to select, with total weight
at most W, so that total value is maximized



Fractional Knapsack: Example

* Capacity (W): 10

'W1=7, U1=14 vl/lez
* Wy = 6, Uy = 10 vz/WZ = 1.666
'W3=4, U3=6 vg/W3=1.5
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Fractional Knapsack: Greedy Algorithm

* Algorithm:
* Sort in decreasing order of density = value/weight, and
add to knapsack until you cannot fit anymore
e Possibly using only fraction of final item added



Fractional Knapsack: Greedy Algorithm

* Algorithm:
* Sort in decreasing order of density = value/weight, and
add to knapsack until you cannot fit anymore
e Possibly using only fraction of final item added

* Proof by Exchange Argument:
* Suppose vy /wy> vy /Wy > V3 /Wy, ...
 Compare GREEDY and another solution say O.
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