
Greedy Algorithms
a. Unweighted Interval Scheduling

• Interval scheduling.
• Job j starts at sj and finishes at fj.
• Two jobs compatible if they don't overlap.
• Goal: find maximum subset of mutually compatible jobs.

Time
0 1 2 3 4 5 6 7 8 9 10 11

f
g

h

e

a
b

c
d

Interval Scheduling: Problem Definition

• Greedy template: Consider jobs in some natural order.
Take each job provided it's compatible with the ones
already taken.

• [Earliest start time] Consider jobs in ascending order of sj.

• [Earliest finish time] Consider jobs in ascending order of fj.

• [Shortest interval] Consider jobs in ascending order of fj - sj.

• [Fewest conflicts] For each job j, count the number of
conflicting jobs cj. Schedule in ascending order of cj.

Interval Scheduling: Greedy Attempts

counterexample for earliest start time

counterexample for shortest interval

counterexample for fewest conflicts

Interval Scheduling: Greedy Attempts

• Greedy algorithm: Consider jobs in increasing order
of finish time. Take each job provided it's compatible
with the ones already taken.

Sort jobs by finish times so that f1 £ f2 £ ... £
fn.

A ¬ f
for j = 1 to n {
 if (job j compatible with A)
 A ¬ A È {j}
}
return A

set of jobs selected

Interval Scheduling: Greedy Algorithm

Time
0

A

B

D

C

E

H

F

1 2 3 4 5 6 7 8 9 10 11

G

Interval Scheduling: Example

Time
0

A

B

D

C

E

H

F

1 2 3 4 5 6 7 8 9 10 11
G

0 1 2 3 4 5 6 7 8 9 10 11

Interval Scheduling: Example

• Theorem. Greedy algorithm is optimal.
• Pf. (by contradiction) greedy-stays-ahead approach

• Assume greedy is not optimal, and let's see what happens.
• Let i1, i2, ... ik denote set of intervals selected by greedy.
• Let j1, j2, ... jm denote set of intervals in the optimal solution with

i1 = j1, i2 = j2, ..., ir = jr for the largest possible value of r.

j1 j2 jr

i1 i2 ir ir+1

. . .

Greedy:

OPT: jr+1

why not replace job jr+1
with job ir+1?

job ir+1 finishes before jr+1

Interval Scheduling: Proof

• Finding the next earliest finishing time of
remaining intervals via linear search:

• O(n2).
• Sorting

• Sort all the requests by finishing time — O(n log n)
• Iterate through the sorted array taking the next legal

request — O(n)
• O(nlogn)

Interval Scheduling: Implementation

• Scheduling problems are often amenable to greedy
approach

• But there may be many greedy choices and it is
important to select the right one

• Main Takeaway: Greedy-stays-ahead is a useful
proof approach

Summary

Greedy Algorithms
a. Interval Scheduling– Greedy Stays Ahead
b. Minimum Lateness Scheduling

Minimum Lateness Scheduling

i

• Input: !	jobs with length #	i					and deadline $	i						
• Simplifying assumption: all deadlines are distinct

• Output: a minimum--lateness schedule for the jobs
• Can only do one job at a time, no overlap
• The lateness of job !	is max		&i					−	(i		,	0
• The lateness of a schedule is max	{max	{	&i			−	(i		},	0}

max may fi di o

Possible Greedy Rules
• Choose the shortest job first (min	#i)?
• Choose the most urgent job first (min	$	i	−	#	i)?
• Others?

ti lao di 110

tr lo dz 25

student 2 lateness 110 25

opt 2,1 luteum o

d no
dz25

22

Greedy Algorithm: Earliest Deadline First

• Sort jobs so that $1	≤	$2	≤	⋯	≤	$n
• For +	=	1,	…	,	!:

• Schedule job !	right after job !	−	1	finishes

21 di too

32 dz 110

RT ÉI lateness o

YE.IE lateness to

Exchange Argument

• 0	= greedy schedule, 1	= some other schedule

• Exchange Argument:
• We can transform .	to /	by exchanging pairs of jobs
• No exchange increases the lateness of .
• Therefore, the lateness of /	is at most that of .
• /	has the minimum possible lateness

o o GE

Exchange Argument

• 0	= greedy schedule, 1	= (supposedly) optimal
schedule

• We say that two jobs +,	2	are inverted in 1	if $	i	<	$	j	but
2	comes before +	in the schedule

• Observation: greedy has no inversions

Example: two jobs

• Two jobs with deadlines $' < $(and lengths #', #(
• Greedy schedule: 1, 2
• 1: 2, 1 (inversion)

Lateness of !: max(&! − (!, &" + &! − (") = &" + &! − ("

Flipping them: max(&" + &! − (!, &" − (") ≤ &" + &! − ("

Exchange Argument

• We say that two jobs +,	2	are inverted in 1	if $	i				<	$	j	
but 2	comes before +	in	1

• Claim: an optimal schedule has no inversions
• Step 1: If .	has an inversion, then it has an inversion !,	0	
which	are scheduled consecutively in .	

• Step 2: if !,	0	are consecutive jobs that are inverted then
flipping them only reduces the lateness

died

Exchange Argument
• Step 1: If 1	has an inversion, then it has an inversion +,	2	

where which	are scheduled consecutively in 1

• Take	an	inversion	i,	j	where	i	and	j	are	closest	in	the	
schedule	1

• By	definition,	$) > $* 	but	j	comes	before	i
• Suppose	there	is	a	job	k	scheduled	between	k	and	j.
• Case	1:	$+ < $)

• In	this	case	j,	k	is	an	inversion,	contradiction
• Case	2:	$+ > $)

• Since	$) > $* ,	we	have	$+ > $*
• Therefore,	k,	i	is	an	inversion,	contradiction

t.IN

because i j is aninversion

Exchange Argument
• Step 2: If .,	0	are consecutive jobs that are inverted then

flipping them only reduces the lateness
• Does not change the lateness of the other jobs
• Let’s assume these jobs have (# < ($ and lengths 6# , 6$
• Assume job j starts at time	7 in schedule ..

Max lateness of 1 and 2 before flipping:
max(7 + 6$ − ($, 	 7 + 6$+6# − (#) = 7 + 6# + 6$ − (#

Max lateness of 1 and 2 after flipping:
 	 max(7 + 6# + 6$ − ($, 7 + 6# − (#) < 7 + 6# + 6$ − (#

g p

IFT meeee
Tenesceni

Ism cotta

Exchange Argument

• We say that two jobs +,	2	are inverted in 1	if $	i				<	$	j	
but 2	comes before +	in	1

• Claim: an optimal schedule has no inversions
• Step 1: If .	has an inversion, then it has an inversion !,	0	
which	are scheduled consecutively in .	

• Step 2: if !,	0	are consecutive jobs that are inverted then
flipping them only reduces the lateness

• 0	is the unique schedule with no inversions,
lateness(G) ≤ lateness(O)

Greedy Algorithms
a. Interval Scheduling – Greedy Stays Ahead
b. Minimum Lateness Scheduling
c. Interval Scheduling – Exchange Argument

(Unweighted) Interval Scheduling

• Input: !	intervals !			i				,	$i	
• Output: a compatible schedule P	with the largest

possible size
• A schedule is a subset of intervals <	⊆	{1,	…	,	?}
• A schedule <	is compatible if no two !,	0	∈	<	overlap

Greedy Algorithm: Earliest Finish First

• Sort intervals so that Q1	 ≤	Q2	≤	⋯	≤	 Qn
• Let P	be empty
• For +	=	1,	…	,	!:

• If interval !	doesn’t create a conflict, add !	to <
• Return P

Exchange Argument

• Let /	=	 	+1,	…	,	!r	 be greedy’s schedule
• Let .	=	{01,	…	,	0s}	be some other schedule
• Let A be the first time G and O diverge.

• {!(, … , !)*(} = {0(, … , 0)*(}
• !) ≠ 0)

Exchange Argument

• Let /	=	 	+1,	…	,	!r	 be greedy’s schedule
• Let .	=	{01,	…	,	0s}	be some other schedule
• Let A be the first time G and O diverge.

• {!(, … , !)*(} = {0(, … , 0)*(}
• !) ≠ 0)

• Exchange 0) for !) in ..

Greedy Algorithms
a. Interval Scheduling – Greedy Stays Ahead
b. Minimum Lateness Scheduling
c. Interval Scheduling – Exchange Argument

Fractional Knapsack

• Like Knapsack, except that every item can be cut or divided
into arbitrarily small quantities (e.g., salt, spices)

• Given:
• ? items
• Item ! has weight D#	and value E#	
• Knapsack has weight limit W

• Goal:
• Determine (fractions of) items to select, with total weight

at most W, so that total value is maximized

Fractional Knapsack: Example

• Capacity	(W):	10
• D(= 7, E(= 14 E(/D(= 2
• D+ = 6, E+ = 10 E+/D+ = 1.666
• D, = 4, E, = 6 E,/D, = 1.5

t I greedygets value14

for non fractional knapsack
But 2,33 providevalue16

Twiggy greedygetsvalue 14 1 19

Fractional Knapsack: Greedy Algorithm
• Algorithm:

• Sort in decreasing order of density = value/weight, and
add to knapsack until you cannot fit anymore

• Possibly using only fraction of final item added

Fractional Knapsack: Greedy Algorithm
• Algorithm:

• Sort in decreasing order of density = value/weight, and
add to knapsack until you cannot fit anymore

• Possibly using only fraction of final item added

• Proof by Exchange Argument:
• Suppose E(/D(> E+/D+ > E,/D,,….
• Compare GREEDY and another solution say O.

Into o e

sont items in 0 inthe decreasing

order f densities If there is
an item i whosedensity is

largerthanthedensityofsame itemJin 0 and i is not
completely in O we can delete some E weightof j fromO

and instead include eweight f i inO This improves Osince i has
higherdensitythanj This contradicts a being optimal no

such i exists

