Greedy Algorithms
a. Unweighted Interval Scheduling

Interval Scheduling: Problem Definition

* Interval scheduling.
* Job j starts at s, and finishes at f.
* Two jobs compatible if they don't overlap.
* Goal: find maximum subset of mutually compatible jobs.

a

ebe

» Time

Interval Scheduling: Greedy Attempts

* Greedy template: Consider jobs in some natural order.
Take each job provided it's compatible with the ones
already taken.

* [Earliest start time] Consider jobs in ascending order of s;.
* [Earliest finish time] Consider jobs in ascending order of f;.
* [Shortest interval] Consider jobs in ascending order of f; - s..

* [Fewest conflicts] For each job j, count the number of
conflicting jobs c;. Schedule in ascending order of c;.

Interval Scheduling: Greedy Attempts

T == counterexample for earliest start time

counterexample for shortest interval

counterexample for fewest conflicts

Interval Scheduling: Greedy Algorithm

* Greedy algorithm: Consider jobs in increasing order
of finish time. Take each job provided it's compatible
with the ones already taken.

Sort jobs by finish times so that £, < £, < ... <
£..

set of jobs selected

A« ¢
for j =1 to n {
if (job j compatible with A)
A« AU {j}
}

return A

Interval Scheduling: Example

-n |

> Time

0 1 2 3 4 5 6 7 8 9 10 1

Interval Scheduling: Example

]

.G.

> Time

3 4 5 6 7 8 9

10

11

10

11

Interval Scheduling: Proof

* Theorem. Greedy algorithm is optimal.

* Pf. (by contradiction) greedy-stays-ahead approach
* Assume greedy is not optimal, and let's see what happens.
* Letiy, iy, ... iidenote set of intervals selected by greedy.

* Letj,, jo, ..., denote set of intervals in the optimal solution with
iy =]j1, b=]s, ..., i, =] for the largest possible value of r.

job irs1 finishes before jr.1
R

|
recsy: N I N ‘
| i g
| |
| |
orr. I NN BN Y S
!

why not replace job jp.1
with job i.1?

Interval Scheduling: Implementation

* Finding the next earliest finishing time of
remaining intervals via linear search:

* O(n2).

» Sorting
 Sort all the requests by finishing time — O(n log n)

* lterate through the sorted array taking the next legal
request — O(n)
* O(nlogn)

Summary

* Scheduling problems are often amenable to greedy
approach

* But there may be many greedy choices and it is
important to select the right one

* Main Takeaway: Greedy-stays-ahead is a useful
proof approach

Greedy Algorithms

b. Minimum Lateness Scheduling

Minimum Lateness Scheduling

* Input: n jobs with length t; and deadline d;
* Simplifying assumption: all deadlines are distinct

* Qutput: a minimum--lateness schedule for the jobs
 Canonlydo one job at atime, no overlap
* The lateness of job i is max{fi— di,0 }
* The lateness of a schedule is max {miax {fi—d;},0}

Length 1 Deadline 2 = MC(?(1 ‘N\CO({“’OL‘O(L/O'} %
w1] (

Length 2 Deadline 4
Job 2 | | |

Length 3 Deadline 6

Job 3 | | |

Solution: | | |

Job 1: Job 2: Job 3:
done at done at done at
time 1 time1+2=3 time 1+2+3=6

Possible Greedy Rules

* Choose the shortest job first (min &)?
* Choose the most urgent job first (min di— t;)?

e Others?

et wrae.,ﬁﬁ C(h?) 0 okeness 10-25

opt - (2D fuhera O

’l/_,; (00 0(1: e
/\éfz_f-|0 OLZ=?’6

¢ dy o

&1;1 .

’ |

! \pc !
—— —
, 2 NEN

< !

‘9

M%S fazr

Greedy Algorithm: Earliest Deadline First

e Sortjobssothatdi < d, < - < d,

eFori=1,..,n:
* Schedule job i right after job i — 1finishes

'A, - (00
ol | \ Ady= 100
€, -\0
gz | T d, > (VO
JL\ 0(,)/
o1 | gl Jf—iTll {deness =9
S(L;Z,\fol‘iigr T 72 gz)| It) /OQJI"CVJ‘CS§: 10

Exchange Argument
* G = greedy schedule, O = some other schedule

* Exchange Argument:
* We can transform O to G by exchanging pairs of jobs
* No exchange increases the lateness of O
 Therefore, the lateness of G is at most that of O
* (7 has the minimum possible lateness

Q\wjv
. o S, e
Qgi\':}‘\gﬂ“‘ /—>e — > %@\

Exchange Argument

e G = greedy schedule, O = (supposedly) optimal
schedule

* We say that two jobs i, j are inverted in O if d; < d jbut
J comes before i in the schedule
* Observation: greedy has noinversions

Example: two jobs

* Two jobs with deadlines d; < d, and lengths t,, t,

* Greedy schedule: 1, 2
e 0:2, 1 (inversion)

Lateness of O: max(t, — d,, t; +t, —dy) =t; +t, —d;

Flipping them: max(t, +t, —d,, t; —dq) <t; +t, —dy

Exchange Argument

* We say that two jobs i, j are inverted in O if d; < d;
but j comes before i in O

* Claim: an optimal schedule has no inversions

* Step 1: If O has aninversion, then it hasan inversion i, j
whichare scheduled consecutively in O

* Step 2:if i, j are consecutive jobs that are inverted then
flippingthem only reduces the lateness

MVersiam
“ N
L Oy ()

dy < ol

Exchange Argument

* Step 1: If O has an inversion, then it hasan inversion i, j
whichare scheduled consecutively in O

* Take an inversion i, j where i and j are closest in the
schedule O

* By definition, d; > d; but j comes before i
* Suppose there is a job k scheduled between % and j.
* Case 1: dy, < d; i

* In this case j, K is an inversion, contradiction

e Case 2: d,;,, > d LG ¢ CJ 1S 0UN INTeAGhe
k j -

» Since d; > dj, we have d;, > d;
 Therefore, k, i is an inversion, contradiction

Exchange Argument

* Step 2: If i, j are consecutive jobs that are inverted then
flipping them only reduces the lateness

* Does not change the lateness of the other jobs
* Let’s assume these jobs have d; < d; and lengths t;, ¢;

* Assume job j starts at time s in schedule O.

L
Max lateness of § and ® before flipping:
maX(S+tj—d]’,S+tj+ti—di):S+ti+tj—di

_’—/—\fq,) -
ooty . D i

Max lateness of & and Dfafter flipping:

max(s+ti+tj—dj,S+ti—dl~)<s+ti+tj—di
— .
di< O(J Q»O(e_we_%igcﬂc

77zl T zeaz=l s [7zzzz27 1 51777)

S S

Exchange Argument

* We say that two jobs i, j are inverted in O if d; < d;
but j comes before i in O

* Claim: an optimal schedule has no inversions

* Step 1: If O has an inversion, then it hasan inversion i, j
whichare scheduled consecutively in O

* Step 2:if i, j are consecutive jobs that are inverted then
flippingthem only reduces the lateness

* G is the unique schedule with no inversions,
lateness(G) < lateness(O)

Greedy Algorithms

c. Interval Scheduling — Exchange Argument

(Unweighted) Interval Scheduling

* Input: n intervals (sj, fi)
* Output: a compatible schedule S with the largest

possible size
* Ascheduleis a subset of intervals S € {1, ...,n}
* Aschedule S is compatible if notwo i, j € Soverlap

Greedy Algorithm: Earliest Finish First

* Sort intervals sothat f1 < f,< -+ < fi

* Let S be empty

eFori=1, ..,n:
e |f interval i doesn’t create a conflict, add i to S

e Return S

Exchange Argument

e LetG =1{1iy ..., ir} be greedy’s schedule
* Let O ={j1, ..., js} be some other schedule
* Let k be the first time G and O diverge.

* {in o lg—1} = U o k11

* g # Jk

Exchange Argument

Let G ={ iy, ...,ir} be greedy’s schedule

Let O = {j1, ..., Js} be some other schedule
Let k be the first time G and O diverge.

* {in o lg—1} = U o k11

* g F Jk
* Exchange j, for i in O.

Greedy Algorithms

Fractional Knapsack

* Like Knapsack, except that every item can be cut or divided
into arbitrarily small quantities (e.g., salt, spices)

* n items
* Item i has weight w; and value v;
* Knapsack has weight limit W

 Goal:

e Determine (fractions of) items to select, with total weight
at most W, so that total value is maximized

Fractional Knapsack: Example

* Capacity (W): 10

'W1=7, U1=14 vl/lez
* Wy = 6, Uy = 10 vz/WZ = 1.666
'W3=4, U3=6 vg/W3=1.5
| 7 1@
=
77 | 9 ik ke
V- 14 Pov (non Huckend) [Cngpsacls

Bub 12,35 grovide volue [

_ i 0
WA PTG g oty gebs b 16219

ew 7
Value -5

PR

Fractional Knapsack: Greedy Algorithm

* Algorithm:
* Sort in decreasing order of density = value/weight, and
add to knapsack until you cannot fit anymore
e Possibly using only fraction of final item added

Fractional Knapsack: Greedy Algorithm

* Algorithm:
* Sort in decreasing order of density = value/weight, and
add to knapsack until you cannot fit anymore
e Possibly using only fraction of final item added

* Proof by Exchange Argument:
* Suppose vy /wy> vy /Wy > V3 /Wy, ...
 Compare GREEDY and another solution say O.

St Wems n O i“@{ JPWQ‘”X

QJ’L'W\J\ @XJMZL ovdoy % ol!;vLs'\){eg ‘ 17*8 ‘M\@xe S

— >0 ——>90 —>19

Soluhann o AQW\ 'Z (/{)hﬂk (&%S(g 1S

Qﬂﬂau “‘?’e\ow\‘wfe, JEN\SLAVU 7\/50‘(&_&_ (&Y&W\a‘m Q M\JL ¢ is ol
camplelelg in O, e can delebe some £ waight ’%J Jearn O

ondl ingtead rcludle ¢ w&%ﬁ % Lm0, (s (‘mf(row,g O <ince (has
LM/Q/ of{fmﬁ*d ﬂ%wd Tlis cantrodicds O @{AVE aferwQ = 10
ol U exists

