Greedy Algorithms a. Unweighted Interval Scheduling

Interval Scheduling: Problem Definition

- Interval scheduling.
 - Job j starts at s_j and finishes at f_j.
 - Two jobs compatible if they don't overlap.
 - Goal: find maximum subset of mutually compatible jobs.

Interval Scheduling: Greedy Attempts

- **Greedy template:** Consider jobs in some natural order. Take each job provided it's compatible with the ones already taken.
 - [Earliest start time] Consider jobs in ascending order of s_i.
 - [Earliest finish time] Consider jobs in ascending order of f_i.
 - [Shortest interval] Consider jobs in ascending order of f_i s_i.
 - [Fewest conflicts] For each job j, count the number of conflicting jobs c_j. Schedule in ascending order of c_j.

Interval Scheduling: Greedy Attempts

counterexample for earliest start time

counterexample for shortest interval

counterexample for fewest conflicts

Interval Scheduling: Greedy Algorithm

• **Greedy algorithm:** Consider jobs in increasing order of finish time. Take each job provided it's compatible with the ones already taken.

```
Sort jobs by finish times so that f_1 \leq f_2 \leq \ldots \leq f_n.

set of jobs selected

A \leftarrow \phi

for j = 1 to n {

    if (job j compatible with A)

        A \leftarrow A \cup \{j\}

}

return A
```

Interval Scheduling: Example

Interval Scheduling: Example

Interval Scheduling: Proof

- Theorem. Greedy algorithm is optimal.
- Pf. (by contradiction) greedy-stays-ahead approach
 - Assume greedy is not optimal, and let's see what happens.
 - Let i_1 , i_2 , ... i_k denote set of intervals selected by greedy.
 - Let $j_1, j_2, ..., j_m$ denote set of intervals in the optimal solution with $i_1 = j_1, i_2 = j_2, ..., i_r = j_r$ for the largest possible value of r.

Interval Scheduling: Implementation

- Finding the next earliest finishing time of remaining intervals via linear search:
 - O(n²).
- Sorting
 - Sort all the requests by finishing time O(n log n)
 - Iterate through the sorted array taking the next legal request — O(n)
 - O(nlogn)

Summary

- Scheduling problems are often amenable to greedy approach
- But there may be many greedy choices and it is important to select the right one
- Main Takeaway: Greedy-stays-ahead is a useful proof approach

Greedy Algorithms

- a. Interval Scheduling– Greedy Stays Ahead
- b. Minimum Lateness Scheduling

Minimum Lateness Scheduling

- Input: n jobs with length t_i and deadline d_i
 - Simplifying assumption: all deadlines are distinct
- Output: a minimum--lateness schedule for the jobs
 - Can only do one job at a time, no overlap
 - The lateness of job *i* is $max{f_i d_i, 0}$
 - The lateness of a schedule is max $\{m_{i} \ge d_{i}\}, 0\}$

Possible Greedy Rules

- Choose the shortest job first (min *t*_i)?
- Choose the most urgent job first (min $d_i t_i$)?
- Others?

Greedy Algorithm: Earliest Deadline First

- Sort jobs so that $d_1 \leq d_2 \leq \cdots \leq d_n$
- For *i* = 1, ..., *n*:
 - Schedule job i right after job i 1 finishes

- *G* = greedy schedule, *O* = some other schedule
- Exchange Argument:
 - We can transform *O* to *G* by exchanging pairs of jobs
 - No exchange increases the lateness of O
 - Therefore, the lateness of *G* is at most that of *O*
 - *G* has the minimum possible lateness

- *G* = greedy schedule, *O* = (supposedly) optimal schedule
- We say that two jobs *i*, *j* are inverted in *O* if $d_i < d_j$ but *j* comes before *i* in the schedule
 - Observation: greedy has no inversions

Example: two jobs

- Two jobs with deadlines $d_1 < d_2$ and lengths t_1 , t_2
- Greedy schedule: 1, 2
- *O*: 2, 1 (inversion)

Lateness of $O: \max(t_2 - d_2, t_1 + t_2 - d_1) = t_1 + t_2 - d_1$

Flipping them: $\max(t_1 + t_2 - d_2, t_1 - d_1) \le t_1 + t_2 - d_1$

- We say that two jobs *i*, *j* are inverted in *O* if *d*_i < *d*_j but *j* comes before *i* in *O*
- Claim: an optimal schedule has no inversions
 - Step 1: If *O* has an inversion, then it has an inversion *i*, *j* which are scheduled consecutively in *O*
 - Step 2: if *i*, *j* are consecutive jobs that are inverted then flipping them only reduces the lateness

• Step 1: If *O* has an inversion, then it has an inversion *i*, *j* which are scheduled consecutively in *O*

Κ

7

- Take an inversion i, j where i and j are closest in the schedule *O*
 - By definition, $d_i > d_i$ but j comes before i
- Suppose there is a job k scheduled between & and j.
- **Case 1:** $d_k < d_j$
 - In this case j, k is an inversion, contradiction
- Case 2: $d_k > d_j$ before i, j is an inversion
 - Since $d_j > d_i$, we have $d_k > d_i$
 - Therefore, k, i is an inversion, contradiction

- Step 2: If *i*, *j* are consecutive jobs that are inverted then flipping them only reduces the lateness
 - Does not change the lateness of the other jobs
 - Let's assume these jobs have $d_i < d_j$ and lengths t_i , t_j
 - Assume job j starts at time s in schedule O.

Max lateness of $\hat{\mathbf{g}}$ and $\hat{\mathbf{g}}$ <u>before</u> flipping:

 $\max(s + t_j - d_j, s + t_j + t_i - d_i) = s + t_i + t_j - d_i$ $\lim_{lateness for i} \lim_{lateness for i} \lim_{lat$

Max lateness of \mathbf{I} and \mathbf{I} <u>after</u> flipping:

- We say that two jobs *i*, *j* are inverted in *O* if *d*_i < *d*_j but *j* comes before *i* in *O*
- Claim: an optimal schedule has no inversions
 - Step 1: If *O* has an inversion, then it has an inversion *i*, *j* which are scheduled consecutively in *O*
 - Step 2: if *i*, *j* are consecutive jobs that are inverted then flipping them only reduces the lateness
- G is the unique schedule with no inversions, lateness(G) ≤ lateness(O)

Greedy Algorithms

- a. Interval Scheduling Greedy Stays Ahead
 b. Minimum Lateness Scheduling
- c. Interval Scheduling Exchange Argument

(Unweighted) Interval Scheduling

- Input: n intervals (s_i, f_i)
- Output: a compatible schedule *S* with the largest possible size
 - A schedule is a subset of intervals $S \subseteq \{1, ..., n\}$
 - A schedule S is compatible if no two $i, j \in S$ overlap

Greedy Algorithm: Earliest Finish First

- Sort intervals so that $f_1 \leq f_2 \leq \cdots \leq f_n$
- Let *S* be empty
- For *i* = 1, ..., *n*:
 - If interval *i* doesn't create a conflict, add *i* to *S*
- Return S

- Let $G = \{ i_1, ..., i_r \}$ be greedy's schedule
- Let $O = \{j_1, \dots, j_s\}$ be some other schedule
- Let k be the first time G and O diverge.
 - $\{i_1, \dots, i_{k-1}\} = \{j_1, \dots, j_{k-1}\}$

•
$$i_k \neq j_k$$

- Let $G = \{ i_1, ..., i_r \}$ be greedy's schedule
- Let $O = \{j_1, \dots, j_s\}$ be some other schedule
- Let k be the first time G and O diverge.
 - $\{i_1, \dots, i_{k-1}\} = \{j_1, \dots, j_{k-1}\}$
 - $i_k \neq j_k$
- Exchange j_k for i_k in O.

Greedy Algorithms

- a. Interval Scheduling Greedy Stays Ahead
- b. Minimum Lateness Scheduling
- c. Interval Scheduling Exchange Argument

Fractional Knapsack

- Like Knapsack, except that every item can be cut or divided into arbitrarily small quantities (e.g., salt, spices)
- Given:
 - *n* items
 - Item *i* has weight w_i and value v_i
 - Knapsack has weight limit W
- Goal:
 - Determine (fractions of) items to select, with total weight at most W, so that total value is maximized

Fractional Knapsack: Example

- Capacity (W): 10
- $w_1 = 7$, $v_1 = 14$ v_1/w_1
- $w_2 = 6$, $v_2 = 10$
- $w_3 = 4$, $v_3 = 6$

$$v_1/w_1 = 2$$

 $v_2/w_2 = 1.666$
 $v_3/w_3 = 1.5$

greedy gets value 14 for (non fractional) Knapsack But {2,3} provide value 16

greedy gets value $14 + \frac{10}{2} = 19$

Fractional Knapsack: Greedy Algorithm

- Algorithm:
 - Sort in decreasing order of density = value/weight, and add to knapsack until you cannot fit anymore
 - Possibly using only fraction of final item added

Fractional Knapsack: Greedy Algorithm

- Algorithm:
 - Sort in decreasing order of density = value/weight, and add to knapsack until you cannot fit anymore
 - Possibly using only fraction of final item added
- Proof by Exchange Argument:
 - Suppose $v_1/w_1 > v_2/w_2 > v_3/w_3,...$
 - Compare GREEDY and another solution say O.

and instead include ε weight f i in O. This improves O since i has higher density than j. This contradicts O being aptimal \Longrightarrow no such i exists.