Graphs and Graph Traversals a. Introduction to Graphs

Graphs: Key Definitions

- Vertices: can be used to represent people, items, cities,...
- Edges: represent connections, roads, relations between pairs of vertices.
- Can be directed or undirected.

Example: Social Relations

Example: Public Transport

Example: World Wide Web

Graphs: Key Definitions

\leftarrow ElgeSet

- We represent graphs by $G=(V, E)$
- V is the set of nodes/vertices
- $E \subseteq V \times V$ is the set of edges

$$
u \rightarrow v
$$

- Directed: Edges are ordered pairs $e=(u, v)$ "from u to v "
- Undirected: Edges are unordered $e=(u, v)$ "between u and v "

Data Structures: Adjacency List

- An adjacency list is an array of lists, each containing the neighbors of one of the vertices (or the outneighbors if the graph is directed)

Data Structures: Adjacency Matrix

- The adjacency matrix of a graph G is a matrix of 0 s and 1s, normally represented by a two-dimensional array A[1 .. V, 1 .. V], where each entry indicates whether a particular edge is present in G.

Data Structures: Comparison

	Standard adjacency list (linked lists)	(u) is the neighbous Adjacency matrix
Space	$\Theta(V+E)$	$\Theta\left(V^{2}\right)$
Test if $u v \in E$	$O(1+\min \{\operatorname{deg}(u), \operatorname{deg}(v)\})=O(V)$	$O(1)$
Test if $u \rightarrow v \in E$	$O(1+\operatorname{deg}(u))=O(V)$	$O(1)$
List v 's (out-)neighbors	$\Theta(1+\operatorname{deg}(v))=O(V)$	$\Theta(V)$
List all edges	$\Theta(V+E)$	$\Theta\left(V^{2}\right)$
Insert edge $u v$	$O(1)$	$O(1)$
Delete edge $u v$	$O(\operatorname{deg}(u)+\operatorname{deg}(v))=O(V)$	$O(1)$

Basic Graph Theory: Paths

- A path is a sequence of consecutive edges in E
- $P=\left\{\left(u, w_{1}\right),\left(w_{1}, w_{2}\right),\left(w_{2}, w_{3}\right), \ldots,\left(w_{k-1}, v\right)\right\}$
- $P=u-w_{1}-w_{2}-w_{3}-\cdots-w_{k-1}-v$
- The length of the path is the \# of edges
- A vertex can be visited at mastence in a path

Basic Graph Theory: Cycles

- A cycle is a path $v_{1}-v_{2}-\cdots-v_{k}-v_{1}$ and v_{1}, \ldots, v_{k} are distinct

Def: A graph is "simple" if there are no parallel edges or self-loops in the graph

Basic Graph Theory: Connectivity

- An undirected graph is connected if there is a path between every two vertices in the graph.

Basic Graph Theory: Trees

- A simple undirected graph G is a tree if:
- G is connected
- G contains no cycles
- Degree one vertices are leaves.
- A collection of trees is called a forest.
claim: Every tree on n vertices has exactly $n-1$ edges.

Graphs and Graph Traversals a. Introduction to Graphs
b. Graph Traversals: DFS

Exploring a Graph

- Problem: Is there a path from s to t ?
- Idea: Explore all nodes reachable from s.
- Two different search techniques:
- Breadth-First Search: explore nearby nodes before moving on to farther away nodes
- Depth-First Search: follow a path until you get stuck, then go back

Depth-First Search (DFS)

(For both directed and undirected graphs)

Depth-First Search in Directed Graphs

Depth-First Search in Directed Graphs

Vertex	\mathbf{a}	\mathbf{b}	\mathbf{c}	\mathbf{d}	\mathbf{e}	\mathbf{f}	\mathbf{g}
Discoverd	1	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$

\bigcirc Active

Depth-First Search in Directed Graphs

Vertex	a	b	c	d	e	f	\mathbf{g}
Discoverd	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$

Active
\bigcirc Search started but not finished

Depth-First Search in Directed Graphs

Vertex	\mathbf{a}	\mathbf{b}	\mathbf{c}	\mathbf{d}	\mathbf{e}	\mathbf{f}	\mathbf{g}
Discoverd	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$

Active
\bigcirc Search started but not finished

Depth-First Search in Directed Graphs

Vertex	a	b	c	d	e	f	g
Discoverd	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$

Active

O
Search started but not finished
Search finished

Depth-First Search in Directed Graphs

Vertex	a	b	\mathbf{c}	\mathbf{d}	\mathbf{e}	\mathbf{f}	\mathbf{g}
Discoverd	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$

Active

O
Search started but not finished
Search finished

Depth-First Search in Directed Graphs

Vertex	a	\mathbf{b}	\mathbf{c}	\mathbf{d}	\mathbf{e}	\mathbf{f}	\mathbf{g}
Discoverd	$\mathbf{1}$	$\mathbf{1}$	1	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$

Active

O
Search started but not finished
Search finished

Depth-First Search in Directed Graphs

Vertex	a	b	c	d	e	\mathbf{f}	\mathbf{g}
Discoverd	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	1	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$

Active

O
Search started but not finished
Search finished

Depth-First Search in Directed Graphs

Vertex	a	b	c	d	e	f	g
Discoverd	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$

Active

O
Search started but not finished
Search finished

Depth-First Search in Directed Graphs

Vertex	a	b	c	d	e	f	\mathbf{g}
Discoverd	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	1	$\mathbf{0}$	$\mathbf{1}$

Depth-First Search in Directed Graphs

Vertex	a	b	c	d	e	f	g
Discoverd	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$

Active
Search started but not finished
Search finished

Depth-First Search in Directed Graphs

Vertex	a	b	c	d	e	f	g
Discoverd	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$

Active

O
Search started but not finished
Search finished

Depth-First Search in Directed Graphs

Vertex	a	b	c	d	e	f	g
Discoverd	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$

Active

\bigcirc
Search started but not finished
Search finished

Depth-First Search in Directed Graphs

Depth-First Search in Directed Graphs

```
G = (V,E) is a graph
discovered[u] = 0 \forallu
parent \leftarrow glahal amney
DFS (u):
    discovered[u] = 1
    for ((u,v) in E):
    if (discovered[v]=0):
        parent[v] = u
        DFS (v)
```


Practice Problems

$$
n:=|V| \quad m:=|E|
$$

Use DFS to count the number of vertices reachable from a vertex u.

```
G = (V,E) is a graph
                                Ideal: Run DES(u).
discovered[u] = 0 \forallu
DFS (u) :
    discovered[u] = 1
    for ((u,v) in E):
        if (discovered[v]=0):
            DFS (v)
```


Practice Problems

Use DFS to count the number of vertices reachable from a vertex u.

```
G = (V,E) is a graph
discovered[u] = 0 \forallu
```

DFS (u) :
discovered[u] = 1
reachable $=1$
for ((u, v) in $E)$:
if (discovered[v]=0): reachable+= DFS (v)
return reachable

Depth-First Search in Directed Graphs

- Fact: The parent-child edges form a (directed) tree
- Each edge in G has a type:
- Tree edges: $(a, b),(b, g),(c, e)$
- These are the edges that discover new nodes
- Forward edges: (a, d)
- Ancestor to descendant
- Back edges: (d, a)
- Descendant to ancestor
- Implies a directed cycle!
- Cross edges: (c, b)
- No ancestral relation

Depth-First Search in Directed Graphs

- Fact: The parent-child edges form a (directed) tree
- Each edge in G has a type:
- Tree edges: $(a, b),(b, g),(c, e)$
- These are the edges that discover new nodes
- Forward edges: (a, d)
- Ancestor to descendant
- Back edges: (d, a)
- Descendant to ancestor
- Implies a directed cycle!
- Cross edges: (c, b)
- No ancestral relation

Ask the Audience

- DFS starting from node a
- Search in alphabetical order
- Label edges with \{tree, forward, back, cross\}

Discovery and Finish Times

$$
\mathrm{G}=(\mathrm{V}, \mathrm{E}) \text { is a graph }
$$ discovered[u] = $0 \quad \forall u$ clock $=1$, is a glabal variable DFS (u) :

discovered[u] $=1$
for $((u, v)$ in $E)$:
if (discovered[v]=0):
parent[v] $=u$
DFS (v)

Vertex	Discovery	Finish
a	1	8
b	2	3
c	4	5
d	6	7

- Maintain a counter clock, initially set clock $=1$, and ++ it when starting and finishing the search of a vertex.

Ask the Audience

- Compute the discovery and finish times for this graph
- DFS from \boldsymbol{a}, search in alphabetical order

Vertex	a	b	c	d	e	f	g	h
Discovery d[]	1	2	3	4	13	7	6	5
Finish f[]	16	15	12	11	14	8	9	10

Discovery and Finish Times

(d_{u}, f_{u}) and (d_{v}, f_{v}) either nest or are disjoint (1) $\stackrel{d u}{\rightleftarrows} f_{u}^{d u} f_{u}$

Discovery and Finish Times
(d_{u}, f_{u}) and (d_{v}, f_{v}) either nest or are disjoint

Let u be the vertex that is discovered first and consider the two possible cases:

- There is a path from u to v v must be discard before u finishes.
- No path from u to v
u discoress all undisconend vertices reachable frames and finishes. Vertex v is discaved after mends.

Discovery \& Finish Times and Edge Types

- For any (directed) edge (u, v) :
- u started earlier but finished later \Rightarrow ? Tree or forward
- v started earlier but finished later \Rightarrow ?
- v started and finished earlier \Rightarrow ? crass
- u started and finished earlier \Rightarrow ?
cannot happen

DFS in Undirected Graphs

```
G = (V,E) is a graph
discovered[u] = 0 \forallu
DFS (u):
    discovered[u] = 1
    d[u] = clock, clock++
    for ((u,v) in E):
        if (discovered[v]=0):
        parent[v] = u
        DFS (v)
    f[u] = clock, clock++
```


- Maintain a counter clock, initially set clock $=1$, and ++ it when starting and finishing the search of a vertex.

Depth-First Search in Undirected Graphs

- Fact: The parent-child edges form a (directed) tree
- Each edge has a type:
- Tree edges: $(a, b),(a, e),(b, d)$
- These are the edges that discover new vertices
- Back edges: $(c, a),(d, a)$
- between descendent and ancestor
- No forward or cross edges

Depth-First Search in Undirected Graphs

- Fact: The parent-child edges form a (directed) tree
- Each edge has a type:
- Tree edges: $(a, b),(a, e),(b, d)$
- These are the edges that discover new vertices
- Back edges: $(c, a),(d, a)$
- between descendent and ancestor
- No forward or cross edges

Depth-First Search in Directed Graphs

- Fact: The parent-child edges form a (directed) tree
- Each edge in G has a type:
- Tree edges: $(a, b),(b, g),(c, e)$
- These are the edges that discover new nodes
- Forward edges: (a, d)
- Ancestor to descendant
- Back edges: (d, a)
- Descendant to ancestor
- Implies a directed cycle!
- Cross edges: (c, b)
- No ancestral relation

DFS Running Time (w/ adj. lists)

```
G = (V,E) is a graph
discovered[u] = 0 \forallu
DFS (u):
    discovered[u] = 1
    d[u] = clock, clock++
    for ((u,v) in E):
        if (discovered[v]=0):
        parent[v] = u
        DFS (v)
    f[u] = clock, clock++
```


DFS Running Time (w/ adj. lists)

DFS(u):
discovered[u] = 1
d[u] = clock, clock++
for ((u,v) in E):
if (discovered[v]=0):
parent[v] = u
DFS (v)
f[u] = clock, clock++

```
```

```
G = (V,E) is a graph
```

```
G = (V,E) is a graph
discovered[u] = 0 \forallu
```

discovered[u] = 0 \forallu

```
- Initialization takes \(\Theta(n)\)
- DFS(u):
- Processes all edges \((u, v)\) incident from \(u\)
- Calls DFS \((v)\) for every undiscovered \(v\)
- Number of recursive calls equal to number of vertices reachable from \(u=O(n)\)
- Other work constant factor of number of edges reachable from \(u=O(m)\)
- \(O(n+m)\) time and space


\section*{Depth First Search: Recap}
- DFS( \(\boldsymbol{s})\) : Explore all vertices and edges reachable from \(s\).
- Builds a DFS tree, and classifies edges as tree, back, and (for directed) forward, cross
- Different order of processing edges can lead to different DFS trees and classifications
- Regardless, each DFS traversal explores the same set of vertices and edges
- Running time \(=O(n+m)\)
- Handy subroutine useful for many applications

Graphs and Graph Traversals a. Introduction to Graphs
b. Graph Traversals: DFS
c. Directed Acyclic Graphs

\section*{Directed Acyclic Graphs (DAGs)}

- DAG: A directed graph with no directed cycles
- Can be much more complex than an undirected graph without cycles (collection of trees)


\section*{DAGs as Precedence Relationships}

- Each node of the DAG is an activity
- Edge \((u, v)\) indicates that \(u\) needs to be completed before \(v\) can be done
- In what order should the activities be completed?
- Topological ordering

\section*{DAGs and Topological Ordering}
- DAG: A directed graph with no directed cycles
- DAGs represent precedence relationships

- A topological ordering of a directed graph is a labeling of the nodes from \(v_{1}, \ldots, v_{n}\) so that all edges go "forwards", that is \(\left(v_{i}, v_{j}\right) \in E \Rightarrow j>i\)
- \(G\) has a topological ordering \(\Rightarrow G\) is a DAG

\section*{DAGs and Topological Ordering}
- Problem 1: given a digraph \(G\), is it a DAG?
- Problem 2: given a digraph \(G\), can it be topologically ordered?

\section*{DAGs and Topological Ordering}
- Problem 1: given a digraph \(G\), is it a DAG?
- Problem 2: given a digraph \(G\), can it be topologically ordered?
- Thm: \(G\) has a topological ordering \(\Leftrightarrow G\) is a DAG
- We will design an algorithm that given a DAG returns a topological ordering.

DAGs and In-Degrees

- Observation: the last node must have no out-edges

- Fact: In any DAG, there is always a node with no outgoing edges (ie., out-degree of 0 )
Proof by coartiodiction. Support every vertex has an antgaing ely.
Stank from an anbiltrany vertex \(u\). Keep going thrush out going eelpu. At some paint, we revisit a zuntex and find a direetul cycle

Existence of Topological Ordering
- Fact: In any DAG, there is a node with out-degree 0
- Theorem: Every DAG has a topological ordering
- Proof (Induction): Induction an \(n\). Base case \(n=1\).

Take a ventex \(v_{n}\) with no aut-gaing refer (exists by the fact alone).
Delete \(v\) audits eefes. The remainiy graph \(G^{\prime}\) is still a DAG.


Let \(v_{1}, \ldots, v_{n-1}\) be the tapalogical andery of the remind DAG (exists by IH). Return \(v_{1}, \ldots, u_{n-1}, u_{n}\).

\section*{Topological Ordering Algorithm I}
- Repeatedly find node \(u\) with zero in-degree
- Place \(u\) next in the order
- Remove u and out-edges
- Update in-degrees
- \(\Theta\left(n^{2}\right)\) time

\section*{Topological Ordering Algorithm I}
- Repeatedly find node \(u\) with zero in-degree
- Place \(u\) next in the order
- Remove u and out-edges
- Update in-degrees
- \(\Theta\left(n^{2}\right)\) time

(b)

(e)
(d) (c) (P)

\section*{Topological Ordering Algorithm I}
- Repeatedly find node \(u\) with zero in-degree
- Place \(u\) next in the order
- Remove \(u\) and out-edges
- Update in-degrees
- \(\Theta\left(n^{2}\right)\) time

A faster algorithm?


\section*{Recall Finish Times}
\[
\mathrm{G}=(\mathrm{V}, \mathrm{E}) \text { is a graph }
\]
\[
\text { discovered }[\mathrm{u}]=0 \quad \forall \mathrm{u}
\]

DFS (u) :
discovered[u] = 1
d[u] = clock, clock++
for ( \(u, v\) ) in \(E:\)
if (discovered[v]=0): parent[v] = u DFS (v)
f[u] = clock, clock++

- Maintain a counter clock, initially set clock = 1

Finish Times and Back Edges
- Observation: In a DAG, the first vertex to finish has no outgoing edges.
supper \(v\) is the first vertex to finish.
If \(v\) has an outgoing edge \((v, u)\) then either we
have nat discaned u yet, which contradicts \(v\) hang finish, or \(u\) is a discanel ventex but this weal mean that \((v, u)\) is a backward eff. This gives a directed cycle, cant radieding the graph beige a DAG.


\section*{Finish Times and Back Edges}
- Observation: In a DAG, any vertex \(v\) has only edges to the vertices with smaller finish time.

\section*{Finish Times and Back Edges}
- Observation: In a DAG, any vertex \(v\) has only edges to the vertices with smaller finish time.
- Proof by contradiction: Assume ( \(v, u\) ) exists with \(f_{v}<f_{u}\). Two possible cases when \(v\) visited:
- \(u\) is already discovered
- \(u\) is not discovered

\section*{Topological Ordering from Finish Times}
- Claim: Ordering nodes by decreasing finish times gives a topological ordering

\section*{Topological Ordering Algorithm II}
- Initialize
- Run DFS on whole graph
- Return vertices in reverse order of finish times.
```

DFS (u):
discovered[u] = 1
for (u,v) in E:
if (discovered[v]=0):
parent[v] = u
DFS(v)
push u in S
discovered[u] = 0 \forallu
S = empty stack
for u in V:
if discovered[u] = 0:
DFS (u)
Return reversed(s)

```

\section*{Topological Ordering Algorithm II}
```

DFS (u):
discovered[u] = 1
for (u,v) in E:
if (discovered[v]=0):
parent[v] = u
DFS(v)
push u in S
discovered[u] = 0 \forallu
S = empty stack
for u in V:
if discovered[u] = 0:
DFS (u)
Return reversed(s)

```

\section*{Topological Ordering Recap}
- DAG: A directed graph with no directed cycles
- Any DAG can be topologically ordered
- Label nodes \(v_{1}, \ldots, v_{n}\) so that \(\left(v_{i}, v_{j}\right) \in E \Rightarrow j>i\)

- Can compute a TO in \(\Theta(n+m)\) time using DFS
- Reverse of finish times (post-order) is a topological order```

