Graphs and Graph Traversals
a. Introduction to Graphs



Graphs: Key Definitions

* Vertices: can be used to represent people, items,
cities,...

* Edges: represent connections, roads, relations
between pairs of vertices.

e Can be directed or undirected.
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Graphs: Key Definitions  tex®
E&aageﬂ—

v
* We represent graphsby G = (I/, E)
* I/is the set of nodes/vertices
« £ € VXV is the set of edges

U=V
* Directed: Edges are ordered pairs ¢ = (u, v) “from u to v”
* Undirected: Edges are unordered e = (1, v) “between u and v”




Data Structures: Adjacency List

* An adjacency list is an array of lists, each containing
the neighbors of one of the vertices (or the out-
neighbors if the graph is directed)

<

a)(ma -

-—
)~

=
BB~
SRSNEIE

G-~

f)Ao)~
EEq-

EA A Ao

=
Eaw
e
[)H{=e

S o O o s

)AL AS

Bl Ao
o 0 Sy 0 s



Data Structures: Adjacency Matrix

where each entry indicates whether a

[V

1s, normally represented by a two-dimensional array
V,1..V],

* The adjacency matrix of a graph G is a matrix of Os and
All ..
particular edge is present in G.
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Data Structures: Comparison

ey / " FFLL%
nei; NZZ %
Standard adjacency list Adjacency

(linked lists) i matrix
Space e(V +E) . 9(V?)

© TestifuveE | O(1 + min{deg(u),deg(V)H=0(V) | 0()
Testif u—»v € E O(1 + deg(u)) = O(V) L 0(1)
List v's (out-)neighbors ©(1 +deg(v)) =0(V) e(V)
List all edges O(V +E) L e(V2)
Insert edge uv 0(1) 0(1)

Delete edge uv

O(deg(u) + deg(v))=0(V) i 0(1)



Basic Graph Theory: Paths

* A path is a sequence of consecutive edges in E
* P ={(u,wy), Wy, wz), (Wa,w3), ..., (Wk_1, )}
e P - Uu-w —WwWy —Wg —+—Wp_1—7V
* The length of the path is the # of edges | JHQ
o A wewkex can be vioited ot wma Quee N A Pa




Basic Graph Theory: Cycles

* Acycleisapathvy —v, — - — v, — v, and
V4, ..., Uy are distinct

@ 12

Dt A graph is Siuple’ ¥ Hare are o paralled
@%@ Zd Seﬁ»aopg m'fég 0%



Basic Graph Theory: Connectivity

* An undirected graph is connected if there is a path
between every two vertices in the graph.




Basic Graph Theory: Trees @{29
\
&

* A simple undirected graph G is a tree if:

(7 is connected
* (G contains no cycles @ijg@

. ®
* Degree one vertices are leaves. e

e A collection of trees is
called a forest. G

Clain: Evey dree on 1 ol @D ® & @ (©

has ﬂslacjr(g n—\ Q%(g.
o @ ¥



Graphs and Graph Traversals

b. Graph Traversals: DFS



BFS DES

Exploring a Graph ®
I/ONS /
Aﬁ@f\oﬁ O?
* Problem: Is there a path from s to t? é;

* ldea: Explore all nodes reachable from s.

* Two different search techniques:

* Breadth-First Search: explore nearby nodes before
moving on to farther away nodes

* Depth-First Search: follow a path until you get stuck,
then go back



Depth-First Search (DFS)

(For both directed and undirected graphs)



Depth-First Search in Directed Graphs




Depth-First Search in Directed Graphs

Vertex a




Depth-First Search in Directed Graphs

Vertex a b

‘ Active

O Search started but not finished




Depth-First Search in Directed Graphs

Vertex a b

‘ Active

O Search started but not finished




Depth-First Search in Directed Graphs

Vertex a b
Discoverd ! 1 0 0 0 0 1

‘ Active
O Search started but not finished a
O Search finished



Depth-First Search in Directed Graphs

Vertex a b
Discoverd ! 1 0 0 0

‘ Active

O Search started but not finished

O Search finished




Depth-First Search in Directed Graphs

Vertex a b C
Discoverd ! 1 1 0 0 0

‘ Active

O Search started but not finished a 0
O Search finished



Depth-First Search in Directed Graphs

Vertex a b C d
Discoverd ! 1 1 1 0

‘ Active

O Search started but not finished

O Search finished




Depth-First Search in Directed Graphs

Vertex a b C d
Discoverd ! 1 1 1 0

‘ Active

O Search started but not finished

O Search finished




Depth-First Search in Directed Graphs

Vertex a b C d e
Discoverd ! 1 1 1 1

‘ Active

O Search started but not finished

O Search finished




Depth-First Search in Directed Graphs

Vertex a b C d e
Discoverd ! 1 1 1 1

‘ Active

O Search started but not finished

O Search finished




Depth-First Search in Directed Graphs

Vertex a b C d e
Discoverd ! 1 1 1 1

‘ Active

O Search started but not finished

O Search finished




Depth-First Search in Directed Graphs

Vertex a b C d e
Discoverd ! 1 1 1 1

‘ Active

O Search started but not finished

O Search finished




Depth-First Search in Directed Graphs

G = (V,E) is a graph bbwz
discovered[u] = 0 Vu <& 9

DFS (u) :
discovered[u] =1

for ((u,v) in E):
if (discowvered[v]=0) :
DF'S (v)




Depth-First Search in Directed Graphs

G = (V,E) is a graph

discovered[u] = 0 Vu

((Jaﬁ\ew\’ P %\o\m&

DFS (u) :
discovered[u] =1

for ((u,v) in E):
if (discowvered[v]=0) :
parent[v] = u
DFS (v)




Practice Problems

Use DFS to count the number of vertices reachable
from a vertex u.

G = (V,E) is a graph QE&L (wa D§¥;[u>.
discovered|[u] = 0 Vu
5 Cowk #% 115 in discavend
DFS (u) : OC\:\\ |
discovered[u] =1 frene

for ((u,v) in E):
if (discowvered[v]=0) :
DF'S (v)



Practice Problems

Use DFS to count the number of vertices reachable
from a vertex u.

G = (V,E) is a graph

discovered|[u] = 0 Vu

DFS (u) :
discovered|u] =1
reachable =1

for ((u,v) in E):
if (discowvered[v]=0) :
reachable+= DFS (v)

return reachable



Depth-First Search in Directed Graphs

* Fact: The parent-child edges form a (directed) tree

* Each edge in G has a type:
* Tree edges: (a,b), (b, g), (c,e)
 These are the edges that discover new nodes

* Forward edges: (a,d)
* Ancestor to descendant

* Back edges: (d, a) /
* Descendant to ancestor '
* Implies a directed cycle! \

* Cross edges: (¢, b)

e No ancestral relation




Depth-First Search in Directed Graphs

* Fact: The parent-child edges form a (directed) tree

* Each edge in G has a type:
* Tree edges: (a,b), (b, g), (c,e)

 These are the edges that discover new nodes

* Forward edges: (a,d)
* Ancestor to descendant
* Back edges: (d, a) ,
* Descendant to ancestor
* Implies a directed cycle!
* Cross edges: (¢, b)

e No ancestral relation




Ask the Audience

* DFS starting from node a
e Search in alphabetical order
e Label edges with {tree, forward, back, cross}




Discovery and Finish Times

G = (V,E) is a graph
discovered[u] = 0 Vu
e =| i a B\QloaQ veuicJole
DFS (u) :

discovered[u] =1
d[u] = clock, clock++

o &
hi
N\t :
K for ((u,v) in E): Vertex | Discovery | Finish _

if (discowvered|[v]=0) : a 1 3
parent[v] = u b 9 3

DF'S
Q(w\&\ ) ¢ o 5
¥ RU£[u]l = clock, clockit d 6 T

* Maintain a counter clock, initially set clock = 1, and
++ it when starting and finishing the search of a vertex.



Ask the Audience

* Compute the discovery and finish times for this graph
 DFS from a, search in alphabetical order

(F—C] To—G

B 2 5 4 3 7 6
EEC (2 2 2 0 o g9 o




Discovery and Finish Times

(d,, [,,) and (d,, f,,) either nest or are disjoint

b e b
ooy




Discovery and Finish Times
(d,, [,,) and (d,, f,,) either nest or are disjoint

Let u be the vertex that is discovered first and
consider the two possible cases:

* There is a path from u to v

U wwet be discared (N%cw\e_ n %WVZJ

* No path fromu to v
o olgcovers all W’LOQSCQMPQ Wwﬂ@g reaoﬁxa/@(e }PYOWUL C‘NQ
y)ev"’\f\gﬁeﬁ,. Mﬁﬁ D i O(‘:SCQV‘QQKL @%Q{w@m«\é



Discovery & Finish Times and Edge Types

. * For any (directed) edge (u, v):

e  u started earlier but finished later = ?  \vee oy iwwaw(
¥
o+
Y . ..
o ?
. v started earlier but finished later = back Q@%C
A dow) £
‘. l -
\fu d(u)l .‘ﬁ(u‘)
* v started and finished earlier = ?  ~,rqc9
5 U

e u started and finished earlier = ?
C
" &w\a{— kqﬂpetf\

N



DFS in Undirected Graphs

G = (V,E) is a graph

discovered[u] = 0 Vu
DFS (u) :
discovered[u] =1

d[u] = clock, clock++

for ((u,v) in E): a 1 \O
if (discowvered|[v]=0) :

parent[v] = u b = *

DFS (v) & 7

d P, 6

f[u] = clock, clock++ e & 9

* Maintain a counter clock, initially set clock = 1, and
++ it when starting and finishing the search of a vertex.



Depth-First Search in Undirected Graphs

* Fact: The parent-child edges form a (directed) tree

* Each edge has a type:
* Tree edges: (a,b), (a,e), (b, d)

* These are the edges that discover new vertices
* Back edges: (c,a),(d,a)

* between descendent and ancestor
* No forward or cross edges

Q

W,

No—=—"




Depth-First Search in Undirected Graphs

* Fact: The parent-child edges form a (directed) tree

* Each edge has a type: °
* Tree edges: (a,b), (a,e), (b, d)
* These are the edges that discover new vertices

* Back edges: (c,a),(d,a)

e between descendent and ancestor ° °

* No forward or cross edges




Depth-First Search in Directed Graphs

* Fact: The parent-child edges form a (directed) tree

* Each edge in G has a type:
* Tree edges: (a,b), (b, g), (c,e)

29  These are the edges that discover new nodes
[« Forward edges: (a,d)

f * Ancestor to descendant

J * Back edges: (d, a) ,

r * Descendant to ancestor

f\)\ * Implies a directed cycle!

* Cross edges: (¢, b)

e No ancestral relation



DFS Running Time (w/ adj. lists)

G = (V,E) is a graph

discovered[u] = 0 Vu
DFS (u) :
discovered[u] =1

d[u] = clock, clock++

for ((u,v) in E):
if (discowvered|[v]=0) :
parent[v] = u
DFS (v)

f[u] = clock, clock++



DFS Running Time (w/ adj. lists)

G = (V,E) is a graph

discovered[u] = 0 Vu
DFS (u) :
discovered[u] =1

d[u] = clock, clock++

for ((u,v) in E):

if (discovered[v]=0):

parent[v] = u
DF'S (v)

f[u] = clock, clock++

* Initialization takes O (n)
 DFS(u):

* Processes all edges (u, v)
incident from u

e Calls DFS(v) for every
undiscovered v

 Number of recursive calls
equal to number of vertices
reachable fromu = 0(n)

e Other work constant factor
of number of edges
reachable fromu = 0(m)

* O(n + m) time and space
g\
ﬂ%&mﬁ’@ 4z fzﬁes



Depth First Search: Recap

* DFS(s): Explore all vertices and edges reachable
from s.

* Builds a DFS tree, and classifies edges as tree, back,
and (for directed) forward, cross

 Different order of processing edges can lead to
different DFS trees and classifications

* Regardless, each DFS traversal explores the same
set of vertices and edges

* Runningtime=0(n + m)
* Handy subroutine useful for many applications



Graphs and Graph Traversals

c. Directed Acyclic Graphs



Directed Acyclic Graphs (DAGs) @
* DAG: A directed graph with no directed cycles

* Can be much more complex than an undirected
graph without cycles (collection of trees)

Check Weekly

Historica | Data

Rohrig et al, Journal of Clinical Epidemiology, 2014

Source: Medium.com on Apache Airflow




DAGs as Precedence Relationships

Collect Make frostin
ingredients | Add thin Iayer g Cool Cake
of flour on pan
Add Batter to Bake Cake
Eat Cake!

. Frost Cake
Mix Preheat O
ingredients renea ven

* Each node of the DAG is an activity
* Edge (u,v) indicates that u needs to be completed before v can be done
* In what order should the activities be completed?

* Topological ordering



DAGs and Topological Ordering

* DAG: A directed graph with no directed cycles
* DAGs represent precedence relationships

/—’-\/‘_‘\
ONOJORORCROROR0

* A topological ordering of a directed graph is a
labeling of the nodes from v, ..., v,, so that all

edges go “forwards”, that is (vi, vj) EE=>j>1i
* ( has a topological ordering = G is a DAG




DAGs and Topological Ordering

* Problem 1: given a digraph G, is it a DAG?

* Problem 2: given a digraph G, can it be
topologically ordered?



DAGs and Topological Ordering

* Problem 1: given a digraph G, is it a DAG?

* Problem 2: given a digraph G, can it be
topologically ordered?

* Thm: G has a topological ordering < G is a DAG

* We will design an algorithm that given a DAG returns a
topological ordering.



DAGs and In-Degrees /1(7
2

* Observation: the last node must have no out-edges

OJOTOROROZ0RO

* Fact: In any DAG, there is always a node with no
outgoing edges (i.e., out-degree of 0)

Pmi \b(\J ¢ ombvod;; cliow é“ﬁPW% Q"% WQ% has o Mﬁ% @%6

Sefand fmw; on W//V% wﬁ(ex W |y ﬁw‘ﬁ /ﬁ‘%
' e VeWS y ' qdﬂ‘ecw
Ouﬁdm‘ﬁ @%Vu /H’Some ka, WSJJO& 7/%47/ K dmﬂ ﬁJ %



Existence of Topological Ordering

* Fact: In any DAG, there is a node with out-degree O
* Theorem: Every DAG has a topological ordering
* Proof (Induction): Indudm an 1 Buse cae 1=l

Toee o yuex v, MM e Quj—aoizj%%ﬂ (@ka )7; %ﬁ f‘«d‘ ‘JQCW)
Delete a2 ks Q«%M The W€W\Ou M C\ is schl a DAG\

€ ’l} Lc \\»Q\e f{‘o(;a 07\( ON)'(*/;
”ﬂ }& WM; DAG  (exws)s Ld, THY.

R domm Y, .., M,,,) /(u”l ,




Topological Ordering Algorithm |

* Repeatedly find node u with zero in-degree
* Place u next in the order
* Remove u and out-edges
 Update in-degrees
« O(n?) time



Topological Ordering Algorithm |

* Repeatedly find node u with zero in-degree
* Place u next in the order
* Remove u and out-edges
* Update in-degrees
* O(n?) time




Topological Ordering Algorithm |

* Repeatedly find node u with zero in-degree
* Place u next in the order
* Remove u and out-edges
* Update in-degrees
* O(n?) time

A faster algorithm?




Recall Finish Times
(L r—(

G = (V,E) is a graph

discovered[u] = 0 Vu
DFS (u) : a b
discovered[u] =1
d[u] = clock, clock++
Vertex| d | f
for (u,v) in E: u 1 8
if (discowvered|[v]=0) :
parent[v] = u d 2 3
DFS (v) b 4 7
C 5 6

f[u] = clock, clock++

* Maintain a counter clock, initially setclock = 1



Finish Times and Back Edges

* Observation: In a DAG, the first vertex to finish has
no outgoing edges.

S R S B e

1 has on odgom %Q (wu) Hen eilor we

o ot izl get, lick condroseds 18 b |
o w5 o discaval aodex Dt K wsll wew Jk

@9(@ (S O L&cliwo«ul fz%é Tl/u"S 8\% O oq'{(eq-gzj\ /\) 4
Cy\e, Canly raatlcéx'@)&\M L(»(j o (DAQ. &(//



Finish Times and Back Edges

* Observation: In a DAG, any vertex v has only edges
to the vertices with smaller finish time.



Finish Times and Back Edges

* Observation: In a DAG, any vertex v has only edges
to the vertices with smaller finish time.

* Proof by contradiction: Assume (v, u) exists with
f» < fu- Two possible cases when v visited:

* u is already discovered

 u is not discovered



Topological Ordering from Finish Times

* Claim: Ordering nodes by decreasing finish times
gives a topological ordering



Topological Ordering Algorithm Il

* |nitialize
* Run DFS on whole graph

e Return vertices in reverse
order of finish times.

DFS (u) :
discovered|u] =1
for (u,v) in E:

if (discovered[v]=0) :
parent[v] = u
DFS (v)

push u in S

discovered[u] = 0 Vu
S = empty stack
for u in V:
if discovered[u] = O:
DFS (u)
Return reversed(s)



Topological Ordering Algorithm Il

DFS (u) :
discovered|u] =1
for (u,v) in E:
if (discovered[v]=0) :
parent[v] = u
DFS (v)
push u in S

discovered[u] = 0 Vu
S = empty stack
for u in V:
if discovered[u] = O:
DFS (u)
Return reversed(s)




Topological Ordering Recap

* DAG: A directed graph with no directed cycles

* Any DAG can be topologically ordered
* Label nodes v4, ..., v, so that (vi,vj) EE=j>I

* Can compute a TO in ®(n + m) time using DFS
* Reverse of finish times (post-order) is a topological order



