
Graphs and Graph Traversals 
a. Introduction to Graphs

  



Graphs: Key Definitions

• Vertices: can be used to represent people, items, 
cities,…

• Edges: represent connections, roads, relations 
between pairs of vertices. 
• Can be directed or undirected.



Example: Social Relations

to



Example: Public Transport



Example: World Wide Web



Graphs: Key Definitions

• We represent graphs by ! = #, %
• ! is the set of nodes/vertices
• " ⊆ !×! is the set of edges

• Directed: Edges are ordered pairs % = ', )  “from ' to )”
• Undirected: Edges are unordered % = ', )  “between ' and )”

u c

a b

u c

a b

vertexset

I a Edge
set

ur



Data Structures: Adjacency List

• An adjacency list is an array of lists, each containing 
the neighbors of one of the vertices (or the out-
neighbors if the graph is directed) 

array

jlist



Data Structures: Adjacency Matrix

• The adjacency matrix of a graph G is a matrix of 0s and 
1s, normally represented by a two-dimensional array 
A[1 .. V, 1 .. V ], where each entry indicates whether a 
particular edge is present in G.

YEE



Data Structures: Comparison

degen is
the f

neighbourof a



Basic Graph Theory: Paths

• A path is a sequence of consecutive edges in %
• ! = #,%! , %!, %" , %", %# , … , %$%!, '
• ! = # − %! −%" −%# −⋯−%$%! − '
• The length of the path is the # of edges

a b

e f

c d

g h

A vertex can be visited at most once in apath
mmmm mum

Bg

Mmm



Basic Graph Theory: Cycles

• A cycle is a path &! − &" −⋯− &# − &! and 
&!, … , &#  are distinct

ik

Def A graph is simple if there are no parallel
edges or self loops in thegraph



Basic Graph Theory: Connectivity

• An undirected graph is connected if there is a path 
between every two vertices in the graph.



Basic Graph Theory: Trees

• A simple undirected graph ! is a tree if:
• * is connected
• * contains no cycles

• Degree one vertices are leaves.
• A collection of trees is 
called a forest.

a

be

f cd gh

k l g

Ga

Fa
L S

L V J V J
claim Everytree on n vertices

hasexactly at edges u v u

CAN



Graphs and Graph Traversals 
a. Introduction to Graphs
b. Graph Traversals: DFS



Exploring a Graph

• Problem: Is there a path from * to +?
• Idea: Explore all nodes reachable from *.

• Two different search techniques:
• Breadth-First Search: explore nearby nodes before 

moving on to farther away nodes
• Depth-First Search: follow a path until you get stuck, 

then go back

BFS DFS

HIII
8



Depth-First Search (DFS)

(For both directed and undirected graphs)



Depth-First Search in Directed Graphs

a b

d c

e f

g



Depth-First Search in Directed Graphs

a b

d c

e f

g
Vertex a b c d e f g
Discoverd 1 0 0 0 0 0 0

Active



Depth-First Search in Directed Graphs

a b

d c

e f

g
Vertex a b c d e f g
Discoverd 1 1 0 0 0 0 0

Search started but not finished

Active



Depth-First Search in Directed Graphs

a b

d c

e f

g
Vertex a b c d e f g
Discoverd 1 1 0 0 0 0 1

Search started but not finished

Active



Depth-First Search in Directed Graphs

a b

d c

e f

g
Vertex a b c d e f g
Discoverd 1 1 0 0 0 0 1

Search started but not finished

Search finished

Active



Depth-First Search in Directed Graphs

a b

d c

e f

g
Vertex a b c d e f g
Discoverd 1 1 0 0 0 0 1

Search started but not finished

Search finished

Active



Depth-First Search in Directed Graphs

a b

d c

e f

g
Vertex a b c d e f g
Discoverd 1 1 1 0 0 0 1

Search started but not finished

Search finished

Active



Depth-First Search in Directed Graphs

a b

d c

e f

g
Vertex a b c d e f g
Discoverd 1 1 1 1 0 0 1

Search started but not finished

Search finished

Active



Depth-First Search in Directed Graphs

a b

d c

e f

g
Vertex a b c d e f g
Discoverd 1 1 1 1 0 0 1

Search started but not finished

Search finished

Active



Depth-First Search in Directed Graphs

a b

d c

e f

g
Vertex a b c d e f g
Discoverd 1 1 1 1 1 0 1

Search started but not finished

Search finished

Active



Depth-First Search in Directed Graphs

a b

d c

e f

g
Vertex a b c d e f g
Discoverd 1 1 1 1 1 0 1

Search started but not finished

Search finished

Active



Depth-First Search in Directed Graphs

a b

d c

e f

g
Vertex a b c d e f g
Discoverd 1 1 1 1 1 0 1

Search started but not finished

Search finished

Active



Depth-First Search in Directed Graphs

a b

d c

e f

g
Vertex a b c d e f g
Discoverd 1 1 1 1 1 0 1

Search started but not finished

Search finished

Active



Depth-First Search in Directed Graphs

G = (V,E) is a graph
discovered[u] = 0 ∀u

DFS(u):
 discovered[u] = 1
 
 for ((u,v) in E):
  if (discovered[v]=0):
   DFS(v)

a b

c d

e f

gglobal



Depth-First Search in Directed Graphs

G = (V,E) is a graph
discovered[u] = 0 ∀u

DFS(u):
 discovered[u] = 1
 
 for ((u,v) in E):
  if (discovered[v]=0):
   parent[v] = u
   DFS(v)

a b

c d

e f

g
parent globalannoy



Practice Problems
Use DFS to count the number of vertices reachable 
from a vertex ,.

G = (V,E) is a graph
discovered[u] = 0 ∀u

DFS(u):
 discovered[u] = 1

 for ((u,v) in E):
  if (discovered[v]=0):
   DFS(v)

R E IVI M E IE I

Ideal RunDFS u

Count f 9 s in discovered
Mtime



Practice Problems
Use DFS to count the number of vertices reachable 
from a vertex ,.

G = (V,E) is a graph
discovered[u] = 0 ∀u

DFS(u):
 discovered[u] = 1
 reachable = 1

 for ((u,v) in E):
  if (discovered[v]=0):
    reachable+= DFS(v)

 return reachable
   



Depth-First Search in Directed Graphs

• Fact: The parent-child edges form a (directed) tree
• Each edge in G has a type:
• Tree edges: (,, -), (-, /), (0, 1)

• These are the edges that discover new nodes
• Forward edges: (,, 2)

• Ancestor to descendant
• Back edges: 2, ,

• Descendant to ancestor
• Implies a directed cycle!

• Cross edges: (0, -)
• No ancestral relation

a b

d c

e

g



Depth-First Search in Directed Graphs

• Fact: The parent-child edges form a (directed) tree
• Each edge in G has a type:
• Tree edges: (,, -), (-, /), (0, 1)

• These are the edges that discover new nodes
• Forward edges: (,, 2)

• Ancestor to descendant
• Back edges: 2, ,

• Descendant to ancestor
• Implies a directed cycle!

• Cross edges: (0, -)
• No ancestral relation

a

b

d

c

e g



Ask the Audience

a b

e f

• DFS starting from node -
• Search in alphabetical order
• Label edges with {tree, forward, back, cross}

c d

g h

tree tree
tree

back
tree forward

back back forward tree

cross tree
tree



Discovery and Finish Times

G = (V,E) is a graph
discovered[u] = 0 ∀u

DFS(u):
 discovered[u] = 1
 d[u] = clock, clock++
 
 for ((u,v) in E):
  if (discovered[v]=0):
   parent[v] = u
   DFS(v)

 f[u] = clock, clock++

a b

c d

• Maintain a counter clock, initially set clock = 1, and 
++ it when starting and finishing the search of a vertex.

Vertex Discovery Finish
a 1
b
c
d

clock l is a globalvariable f
differed

2 3
4 5

YE 6 7



Ask the Audience

a b

e f

• Compute the discovery and finish times for this graph
• DFS from 3, search in alphabetical order

c d

g h

Vertex a b c d e f g h
Discovery d[]
Finish f[]

I 2 3 4 13 7 6 5
16 15 12 11 14 9 10



Discovery and Finish Times
(/% , 0%) and (/& , 0&)	either nest or are disjoint

a

b

d

c

e g

(1,12)

(2,5)(6,11)

(9,10)(7,8) (3,4)

0 It if

I do fr
can'thappen



Discovery and Finish Times
(/% , 0%) and (/& , 0&)	either nest or are disjoint

Let , be the vertex that is discovered first and 
consider the two possible cases:

• There is a path from , to & 

• No path from , to &

U mustbe discored before u finishes

u discovers all undiscovered ventias reachable froma and
finishes Vertex U is discoredafterwards



Discovery & Finish Times and Edge Types

• For any (directed) edge (,, &):
• #	started earlier but finished later ⟹ ?

• '	started earlier but finished later ⟹ ? 

• '	started and finished earlier ⟹ ?

• #	started and finished earlier ⟹ ?

it Tree or forward
x

Fayne
backedge

t

crass

cannothappen



DFS in Undirected Graphs

G = (V,E) is a graph
discovered[u] = 0 ∀u

DFS(u):
 discovered[u] = 1
 d[u] = clock, clock++
 
 for ((u,v) in E):
  if (discovered[v]=0):
   parent[v] = u
   DFS(v)

 f[u] = clock, clock++

a b

c d

Vertex Discovery Finish
a 1
b
c
d
e

e

• Maintain a counter clock, initially set clock = 1, and 
++ it when starting and finishing the search of a vertex.

10
2 7
4 5
3 6

9



Depth-First Search in Undirected Graphs

• Fact: The parent-child edges form a (directed) tree
• Each edge has a type:
• Tree edges: (,, -), (,, 1), (-, 2)

• These are the edges that discover new vertices
• Back edges: 0, , , (2, ,)

•  between descendent and ancestor
• No forward or cross edges

a b

c de



Depth-First Search in Undirected Graphs

• Fact: The parent-child edges form a (directed) tree
• Each edge has a type:
• Tree edges: (,, -), (,, 1), (-, 2)

• These are the edges that discover new vertices
• Back edges: 0, , , (2, ,)

•  between descendent and ancestor
• No forward or cross edges

a

b

c

d

e



Depth-First Search in Directed Graphs

• Fact: The parent-child edges form a (directed) tree
• Each edge in G has a type:
• Tree edges: (,, -), (-, /), (0, 1)

• These are the edges that discover new nodes
• Forward edges: (,, 2)

• Ancestor to descendant
• Back edges: 2, ,

• Descendant to ancestor
• Implies a directed cycle!

• Cross edges: (0, -)
• No ancestral relation

a

b

d

c

e g

at

tt



DFS Running Time (w/ adj. lists)

G = (V,E) is a graph
discovered[u] = 0 ∀u

DFS(u):
 discovered[u] = 1
 d[u] = clock, clock++
 
 for ((u,v) in E):
  if (discovered[v]=0):
   parent[v] = u
   DFS(v)

 f[u] = clock, clock++



DFS Running Time (w/ adj. lists)

G = (V,E) is a graph
discovered[u] = 0 ∀u

DFS(u):
 discovered[u] = 1
 d[u] = clock, clock++
 
 for ((u,v) in E):
  if (discovered[v]=0):
   parent[v] = u
   DFS(v)

 f[u] = clock, clock++

• Initialization takes Θ(7) 
• DFS(#):

• Processes all edges ((, *) 
incident from (

• Calls DFS(*) for every 
undiscovered *

• Number of recursive calls 
equal to number of vertices 
reachable from # = 8(7)

• Other work constant factor 
of number of edges 
reachable from # = 8(9)

• 8(7 +9)	time and space 
y

mentias edges



Depth First Search: Recap

• DFS(3): Explore all vertices and edges reachable 
from *.
• Builds a DFS tree, and classifies edges as tree, back, 

and (for directed) forward, cross 
• Different order of processing edges can lead to 

different DFS trees and classifications
• Regardless, each DFS traversal explores the same 

set of vertices and edges
• Running time = 4(5 +7)
• Handy subroutine useful for many applications



Graphs and Graph Traversals 
a. Introduction to Graphs
b. Graph Traversals: DFS
c. Directed Acyclic Graphs



Directed Acyclic Graphs (DAGs)

• DAG: A directed graph with no directed cycles
• Can be much more complex than an undirected 

graph without cycles (collection of trees)

Source: Medium.com on Apache Airflow

Rohrig et al, Journal of Clinical Epidemiology, 2014 



DAGs as Precedence Relationships

Mix 
ingredients

Add thin layer 
of flour on pan

Make frosting

Add Batter to 
Pan

Frost Cake

Cool Cake

Preheat Oven

Bake Cake

Collect 
ingredients

Eat Cake!

• Each node of the DAG is an activity
• Edge ((, *) indicates that ( needs to be completed before * can be done
• In what order should the activities be completed?

• Topological ordering



DAGs and Topological Ordering

• DAG: A directed graph with no directed cycles
• DAGs represent precedence relationships

• A topological ordering of a directed graph is a 
labeling of the nodes from &!, … , &, so that all 
edges go “forwards”, that is &- , &. ∈ % ⇒ : > <
• * has a topological ordering ⇒ * is a DAG



DAGs and Topological Ordering

• Problem 1: given a digraph !, is it a DAG?
• Problem 2: given a digraph !, can it be 

topologically ordered?



DAGs and Topological Ordering

• Problem 1: given a digraph !, is it a DAG?
• Problem 2: given a digraph !, can it be 

topologically ordered?

• Thm: ! has a topological ordering ⟺ ! is a DAG
• We will design an algorithm that given a DAG returns a 

topological ordering.



DAGs and In-Degrees

• Observation: the last node must have no out-edges

• Fact: In any DAG, there is always a node with no 
outgoing edges (i.e., out-degree of 0)

Et

Proofby contradiction
Supposeevery

vertexhasanoutgoingedge

Stantfrom an arbitraryvertexre keepgoing
through

outgoingeye At somepoint
werevisita ventex andfindadirect

cycle



Existence of Topological Ordering

• Fact: In any DAG, there is a node with out-degree 0
• Theorem: Every DAG has a topological ordering
• Proof (Induction): Induction on N Basecase N l

Take a vertexonwithno outgoingeye existsbythefactabove
Delete re auditsedges Theremaininggraph G is still a DAG

Let U Un bethetopologicalending

ofthereming DAG existsby IH

Return U s Un1 Un



Topological Ordering Algorithm I

• Repeatedly find node , with zero in-degree
• Place # next in the order
• Remove # and out-edges
• Update in-degrees
• Θ(7") time



Topological Ordering Algorithm I

• Repeatedly find node , with zero in-degree
• Place # next in the order
• Remove # and out-edges
• Update in-degrees
• Θ(7") time

a b

c d e

f g

go A to



Topological Ordering Algorithm I

• Repeatedly find node , with zero in-degree
• Place # next in the order
• Remove # and out-edges
• Update in-degrees
• Θ(7") time

a b

c d e

f g

A faster algorithm?



Recall Finish Times
u c

a b

• Maintain a counter clock, initially set clock = 1

Vertex d f
u 1 8
a 2 3
b 4 7
c 5 6

G = (V,E) is a graph
discovered[u] = 0 ∀u

DFS(u):
 discovered[u] = 1
 d[u] = clock, clock++
 
 for (u,v) in E:
  if (discovered[v]=0):
   parent[v] = u
   DFS(v)

 f[u] = clock, clock++



Finish Times and Back Edges

• Observation: In a DAG, the first vertex to finish has 
no outgoing edges.

Supper v isthe first vertex tofinish

If u has an outgoingeye u u theneither we

havenotdiscerned u get whichcontradicts a hang
finished

or u is a disconedvertex butthiswould meanthat

Mu is a backwardedge Thisgives a directed f a

cycle contradictingthegraphbig aDAG ft



Finish Times and Back Edges

• Observation: In a DAG, any vertex & has only edges 
to the vertices with smaller finish time.

 



Finish Times and Back Edges

• Observation: In a DAG, any vertex & has only edges 
to the vertices with smaller finish time.
• Proof by contradiction: Assume (&, ,) exists with 
0& < 0%. Two possible cases when v visited:

• , is already discovered 

• , is not discovered
 



Topological Ordering from Finish Times

• Claim: Ordering nodes by decreasing finish times 
gives a topological ordering



Topological Ordering Algorithm II

• Initialize
• Run DFS on whole graph
• Return vertices in reverse 

order of finish times.

DFS(u):
 discovered[u] = 1 
 for (u,v) in E:
  if (discovered[v]=0):
   parent[v] = u
   DFS(v)
  push u in S

discovered[u] = 0 ∀u
S = empty stack
for u in V:
 if discovered[u] = 0:
  DFS(u)
Return reversed(s)



Topological Ordering Algorithm II

a b

c d e

f g

DFS(u):
 discovered[u] = 1 
 for (u,v) in E:
  if (discovered[v]=0):
   parent[v] = u
   DFS(v)
  push u in S

discovered[u] = 0 ∀u
S = empty stack
for u in V:
 if discovered[u] = 0:
  DFS(u)
Return reversed(s)



Topological Ordering Recap

• DAG: A directed graph with no directed cycles
• Any DAG can be topologically ordered

• Label nodes '!, … , '3 so that '4, '5 ∈ = ⟹ > > @

• Can compute a TO in Θ(5 +7) time using DFS
• Reverse of finish times (post-order) is a topological order


