Graphs and Graph Traversals

d. Breadth-First Search



Exploring a Graph

* Problem: Is there a path from s to t?
* |dea: Explore all nodes reachable from s.

* Two different search techniques:

* Depth-First Search: follow a path until you get stuck,
then go back

* Breadth-First Search: explore nearby nodes before
moving on to farther away nodes



Breadth-First Search (BFS)

* Informal Description: start at s, find neighbors of s,
find neighbors of neighbors of s, and so on...

* BFS Tree: A L
e Ly = {s} &% ;LQ

* L1 = all neighbors of L
* L, = all neighbors of L4 that are notin L, L4
* L3 = all neighbors of L, that are notin Ly, L1, Lo

* Ly = all neighbors of L;_1 thatare notin Ly, ..., Lg_1
* Stop when L, is empty



Breadth-First Search in Directed Graphs




Breadth-First Search in Directed Graphs




Breadth-First Search in Directed Graphs




Breadth-First Search in Directed Graphs




Ask the Audience

* BFS this graph froms =1




Breadth-First Search (BFS)

e Definition: the distance between s, t is the number
of edges on the shortest path from sto ¢

* Thm: BFS finds distances from s to other nodes

* L; contains all nodes at distance i from s
* Nodes not in any layer are not reachable from s
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BFS Implementation (Adjacency List)

BFS(G = (V,E), s):
discovered[v] = false Vv, layer|[v] = o Vv

Let i< 0, L, = {s}

layer[s] = 0
discovered|[s] = true

while (L; is not empty):
Initialize new layer L.
For (u in L;):
For ((u,v) in E):

If (discovered[v] = false):
discovered|[v] = true,
layer[v] =i+l
parent[v] = u
Add v to L;,;

i=i+l



Graphs and Graph Traversals

e. Bipartite Graphs and Graph Traversals Recap



Practice Problem: 2-Coloring

* Problem: Tug-of-War
* Need to form two teams R, B
* Some students just don’t get along

* Input: Undirected graph G = (V,E)

* (u,v) € E means u, v will not be on the same team

* Output: Split V into two sets R, B so that no pair in
either set is connected by an edge




2-Coloring (Bipartiteness)

* Equivalent Problem: Is the graph G bipartite?

e (7 is bipartite if V can be split into two sets L and R such
that all edges (u, v) € E go between L and R

L R




Designing the Algorithm

* Idea for the algorithm:
* BFS the graph, coloring nodes as you find them
* Color nodes in layer i blue if i even, red if i odd

* Go over all edges and check if their endpoints have
received different colors.
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BFS 2-Coloring Success Implies Bipartite

e Claim: If our algorithm succeeds, the graph is
bipartite (i.e., can be 2-colored)

* Proof: Immediate since our algorithm checks
validity of the coloring at the end.
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BFS 2-Coloring Failure Implies Not Bipartite

* Claim: If our algorithm did not succeed, the graph
is not bipartite (i.e., cannot be 2-colored)

* Question: Suppose you have not 2-colored the
graph successfully, maybe someone else can do it?




Key Fact

* Key Fact: If G contains a cycle of odd length, then G
is not 2-colorable/bipartite
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BFS 2-Coloring Failure Implies Not Bipartite

e Claim: If BFS did not 2-color the graph, the graph is not
bipartite (i.e., cannot be 2-colored)

* Proof: If BFS fails, then G contains an odd cycle
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Graphs and Graph Traversals

f. Connected Components



Connected Components (Undirected)

* An undirected graph is connected if for every two
vertices u,v € I/, there is a path from u to v

e connected component: a maximal subset of
vertices which are all connected in G



Connected Components (Undirected)

* Algorithm:
* Pickanodev
* Use DFS or BFS to find all nodes reachable from v
e Labels those as one connected component
* Repeat until all nodes are in some component
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Connected Components (Undirected)

CC(G) :
// Initialize an empty array and a counter
let comp[l:n]=1, ¢ =1

// Iterate through nodes
for (u=1,..,n):
// Ignore this node if it already has a comp.
// Otherwise, explore it using DFS
if (comp[u] = 1):
run DFS (G, u)
let comp[v] = ¢ for every v found by DFS
let c=c+1

output comp[l:n]
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for (u=1,.,n):
if (comp[u] = 1):
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let comp[v] = ¢ for every v M@g ST bner s
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Connected Components (Undirected)

* Problem: Given an undirected graph G, split it into
connected components

* Algorithm: Can split a graph into connected
components in time O@(n + m) using DFS

* Punchline: Usually assume graphs are connected

* Implicitly assume that we have already broken the graph
into CCs in O(n + m) time



Graph Traversals Recap

* Basic Graph Theory:
* Degrees, paths, cycles, trees

e Graph representations:
* Adjacency list and adjacency matrix

* Depth-First Search:

* Discovery and finish times
* Tree, forward, back, and cross edges
* DFS from any node takes O(n + m) time

* DAGs:

* No directed cycles, no back edges
* Topological ordering in @(n + m) time



Graphs and Graph Traversals Recap

* Breadth-First Search:
e Explores from start node, splits nodes into layers
* Min-hop path from start to all other reachable nodes
* BFS from any node takes O(n + m) time
* Can be used to determine if undirected graph is bipartite

* Connected components:
 Splits graph into its connected components

* Straightforward ©(n + m) time application of DFS and
BFS



Graphs and Graph Traversals

g. Strongly Connected Components



Strongly Connected Components

* Definition: In a directed graph, we say two vertices
u and v are strongly connected if there is a path
from v to u and a path from u to v.

e A strongly connected component is a maximal set
of vertices all two of which are strongly connected.
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Strongly Connected Components

* Problem: Given a directed graph G, split it into
strongly connected components

* Input: Directed graph G = (V,E)

* Output: A labeling of the vertices by their strongly
connected component



Ask the Audience

* Find all the strongly connected components (SCCs)
of this directed graph
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Strongly Connected Components

* Observation: SCC(s) is all nodes v € V such that v
is reachable from s and vice versa

* Can find all nodes reachable from s using DFS

e How do we find all nodes that can reach s?
* DFS(s) in reverse of the graph!



SCCs by DFS

SCC-Slow () : Rurs i
GR = G with all edges “reversed”
n(n<m) dwe
// Initialize an array and counter
comp[l:n]=1, ¢ =1

for (u=1,..,n):
// If u has not been explored
if (comp[u] = 1): ) M>
_ o st
S = set of nodes found by DFS(G,u) (3@%HM>
T = set of nodes found by DFS (GR,u) Hwe
// S N T contains SCC (u)
label S N T with c

c =c+1

return comp



