
Graphs and Graph Traversals
a. Introduction to Graphs
b. Graph Traversals: DFS
c. Topological Ordering
d. Breadth-First Search

Exploring a Graph

• Problem: Is there a path from ! to "?
• Idea: Explore all nodes reachable from !.

• Two different search techniques:
• Depth-First Search: follow a path until you get stuck,

then go back
• Breadth-First Search: explore nearby nodes before

moving on to farther away nodes

Breadth-First Search (BFS)

• Informal Description: start at !, find neighbors of !,
find neighbors of neighbors of !, and so on…

• BFS Tree:
• !! = #
• !" = all neighbors of !!
• !# = all neighbors of !" that are not in !!, !"
• !$ = all neighbors of !# that are not in !!, !", !#
• …
• !% = all neighbors of !%&" that are not in !!, … , !%&"
• Stop when !%'" is empty

18

Breadth-First Search in Directed Graphs

a b

d c
e

f

g

i

h

p
layer 0

Breadth-First Search in Directed Graphs

a b

d c
e

f

g

layer 0

i

h

p

layer 1

Breadth-First Search in Directed Graphs

a b

d c
e

f

g

layer 0

i

h

p

layer 1

layer 2

layer 3

Breadth-First Search in Directed Graphs

a b

d c
e

f

g

layer 0

i

h

p

layer 1

layer 2

layer 3

Ask the Audience

• BFS this graph from # = %

Breadth-First Search (BFS)

• Definition: the distance between !, " is the number
of edges on the shortest path from ! to "
• Thm: BFS finds distances from ! to other nodes
• !(contains all nodes at distance & from #
• Nodes not in any layer are not reachable from #

Proofby inductionon 2 Basecase 2 0 Assumingthat tin includes all
wentas f distance it s all f their neighbor not in La Lit
mustbelong tali and vileversa

I ti

BFS Implementation (Adjacency List)
BFS(G = (V,E), s):
 discovered[v] = false ∀v, layer[v] = ∞ ∀v
 Let i	←	0, L0 = {s}

 layer[s] = 0
 discovered[s] = true

 while (Li is not empty):
 Initialize new layer Li+1
 For (u in Li):
 For ((u,v) in E):
 If (discovered[v] = false):
 discovered[v]=	true,
 layer[v] =	i+1
 parent[v] = u
 Add v to Li+1
 i=	i+1

Graphs and Graph Traversals
a. Introduction to Graphs
b. Graph Traversals: DFS
c. Topological Ordering
d. Breadth-First Search
e. Bipartite Graphs and Graph Traversals Recap

Practice Problem: 2-Coloring

• Problem: Tug-of-War
• Need to form two teams ',(
• Some students just don’t get along

• Input: Undirected graph ' = (,)
•), * ∈ , means), * will not be on the same team

• Output: Split (into two sets *,+ so that no pair in
either set is connected by an edge

2-Coloring (Bipartiteness)

• Equivalent Problem: Is the graph ' bipartite?
• - is bipartite if . can be split into two sets ! and / such

that all edges), * ∈ , go between ! and /

2 1

3 4

L R

5

Designing the Algorithm

• Idea for the algorithm:
• BFS the graph, coloring nodes as you find them
• Color nodes in layer & blue if & even, red if & odd
• Go over all edges and check if their endpoints have

received different colors.

BFS 2-Coloring Success Implies Bipartite

• Claim: If our algorithm succeeds, the graph is
bipartite (i.e., can be 2-colored)
• Proof: Immediate since our algorithm checks

validity of the coloring at the end.

BFS 2-Coloring Failure Implies Not Bipartite

• Claim: If our algorithm did not succeed, the graph
is not bipartite (i.e., cannot be 2-colored)
• Question: Suppose you have not 2-colored the

graph successfully, maybe someone else can do it?

Key Fact

• Key Fact: If ' contains a cycle of odd length, then '
is not 2-colorable/bipartite

o 89

BFS 2-Coloring Failure Implies Not Bipartite
• Claim: If BFS did not 2-color the graph, the graph is not

bipartite (i.e., cannot be 2-colored)
• Proof: If BFS fails, then G contains an odd cycle

SinceBfs failsthereis an edge anysuchthat u and u are assigned
thesamecalm First u and u mustbe in thesamelayer as
otherwisewhicheverdiscoveredfirst wouldaddtheothertothenextlayer

Let w be acommonancestorf u andre
furthestfromthesource

Weclaimthat P w u up PalWI O W

is an oddcycle This isbecame Pia a and

y fFP G w havethesame lengths

Graphs and Graph Traversals
a. Introduction to Graphs
b. Graph Traversals: DFS
c. Topological Ordering
d. Breadth-First Search
e. Bipartite Graphs and Graph Traversals Recap
f. Connected Components

Connected Components (Undirected)

• An undirected graph is connected if for every two
vertices ,, - ∈ (, there is a path from , to -

• connected component: a maximal subset of
vertices which are all connected in G

2 1

3 4 5

Connected Components (Undirected)

• Algorithm:
• Pick a node v
• Use DFS or BFS to find all nodes reachable from v
• Labels those as one connected component
• Repeat until all nodes are in some component

1 2

4 5 6

3

Connected Components (Undirected)

CC(G):
 // Initialize an empty array and a counter
 let comp[1:n] =	⊥, c = 1

 // Iterate through nodes
 for (u = 1,…,n):
 // Ignore this node if it already has a comp.
 // Otherwise, explore it using DFS
 if (comp[u] = ⊥):
 run DFS(G,u)
 let comp[v] = c for every v found by DFS
 let c = c + 1

 output comp[1:n]

Running Time

CC(G):
 let comp[1:n] =	⊥, c ← 1

 for (u = 1,…,n):
 if (comp[u] = ⊥):
 run DFS(G,u)
 let comp[v] = c for every v
 found by DFS
 let c = c + 1

 output comp[1:n]

DFS takes an m time
initialization
m isthe f
reachablealpsfrom

thesource

Therefore overallthisol

tales on m times

when run on allcanned

components

Connected Components (Undirected)

• Problem: Given an undirected graph ', split it into
connected components
• Algorithm: Can split a graph into connected

components in time Θ(1 +3) using DFS
• Punchline: Usually assume graphs are connected

• Implicitly assume that we have already broken the graph
into CCs in Θ(2 +4) time

Graph Traversals Recap

• Basic Graph Theory:
• Degrees, paths, cycles, trees

• Graph representations:
• Adjacency list and adjacency matrix

• Depth-First Search:
• Discovery and finish times
• Tree, forward, back, and cross edges
• DFS from any node takes 6(2 +4) time

• DAGs:
• No directed cycles, no back edges
• Topological ordering in Θ(2 +4) time

Graphs and Graph Traversals Recap

• Breadth-First Search:
• Explores from start node, splits nodes into layers
• Min-hop path from start to all other reachable nodes
• BFS from any node takes 6(2 +4) time
• Can be used to determine if undirected graph is bipartite

• Connected components:
• Splits graph into its connected components
• Straightforward Θ(2 +4) time application of DFS and

BFS

Graphs and Graph Traversals
a. Introduction to Graphs
b. Graph Traversals: DFS
c. Topological Ordering
d. Breadth-First Search
e. Bipartite Graphs and Graph Traversals Recap
f. Connected Components
g. Strongly Connected Components

Strongly Connected Components

• Definition: In a directed graph, we say two vertices
u and v are strongly connected if there is a path
from v to u and a path from u to v.
• A strongly connected component is a maximal set

of vertices all two of which are strongly connected.

2 1

3 4 5
IT

Strongly Connected Components

• Problem: Given a directed graph ', split it into
strongly connected components
• Input: Directed graph ' = (,)
• Output: A labeling of the vertices by their strongly

connected component

2 1

3 4 5

Ask the Audience

• Find all the strongly connected components (SCCs)
of this directed graph

a b

e f

c d

g h

Strongly Connected Components

• Observation: SCC(!) is all nodes - ∈ (such that -
is reachable from ! and vice versa
• Can find all nodes reachable from # using DFS
• How do we find all nodes that can reach #?

• DFS(') in reverse of the graph!

SCCs by DFS

SCC-Slow():
 GR = G with all edges “reversed”

 // Initialize an array and counter
 comp[1:n] =	⊥, c = 1

 for (u = 1,…,n):
 // If u has not been explored
 if (comp[u] = ⊥):
 S = set of nodes found by DFS(G,u)
 T = set of nodes found by DFS(GR,u)
 // S ∩ T contains SCC(u)
 label S ∩ T with c
 c = c + 1

 return comp

Runs in

n ntm time

antmyaninmtime

