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Exploring a Graph

• Problem: Is there a path from ! to "?
• Idea: Explore all nodes reachable from !.

• Two different search techniques:
• Depth-First Search: follow a path until you get stuck, 

then go back
• Breadth-First Search: explore nearby nodes before 

moving on to farther away nodes



Breadth-First Search (BFS)

• Informal Description: start at !, find neighbors of !, 
find neighbors of neighbors of !, and so on…

• BFS Tree:
• !! = #
• !" = all neighbors of !!
• !# = all neighbors of !" that are not in !!, !"
• !$ = all neighbors of !# that are not in !!, !", !#
• …
• !% = all neighbors of !%&" that are not in !!, … , !%&"
• Stop when !%'" is empty
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Ask the Audience

• BFS this graph from # = % 



Breadth-First Search (BFS)

• Definition: the distance between !, " is the number 
of edges on the shortest path from ! to "
• Thm: BFS finds distances from ! to other nodes
• !( contains all nodes at distance & from #
• Nodes not in any layer are not reachable from #
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BFS Implementation (Adjacency List)
BFS(G = (V,E), s):
  discovered[v] = false ∀v, layer[v] = ∞ ∀v
  Let i	←	0, L0 = {s}

 layer[s] = 0
 discovered[s] = true

 while (Li is not empty):
  Initialize new layer Li+1
  For (u in Li):
   For ((u,v) in E):
    If (discovered[v] = false):
     discovered[v]=	true,
     layer[v] =	i+1
     parent[v] = u
     Add v to Li+1
  i=	i+1
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Practice Problem: 2-Coloring

• Problem: Tug-of-War
• Need to form two teams ',( 
• Some students just don’t get along

• Input: Undirected graph ' = (, )  
• ), * ∈ , means ), * will not be on the same team

• Output: Split ( into two sets *,+ so that no pair in 
either set is connected by an edge



2-Coloring (Bipartiteness)

• Equivalent Problem: Is the graph ' bipartite?
• - is bipartite if . can be split into two sets ! and / such 

that all edges ), * ∈ , go between ! and /
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Designing the Algorithm

• Idea for the algorithm: 
• BFS the graph, coloring nodes as you find them
• Color nodes in layer & blue if & even, red if & odd
• Go over all edges and check if their endpoints have 

received different colors. 



BFS 2-Coloring Success Implies Bipartite

• Claim: If our algorithm succeeds, the graph is 
bipartite (i.e., can be 2-colored)
• Proof: Immediate since our algorithm checks 

validity of the coloring at the end.



BFS 2-Coloring Failure Implies Not Bipartite

• Claim: If our algorithm did not succeed, the graph 
is not bipartite (i.e., cannot be 2-colored)
• Question: Suppose you have not 2-colored the 

graph successfully, maybe someone else can do it?



Key Fact

• Key Fact: If ' contains a cycle of odd length, then ' 
is not 2-colorable/bipartite
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BFS 2-Coloring Failure Implies Not Bipartite
• Claim: If BFS did not 2-color the graph, the graph is not 

bipartite (i.e., cannot be 2-colored)
• Proof: If BFS fails, then G contains an odd cycle

SinceBfs failsthereis an edge anysuchthat u and u are assigned
thesamecalm First u and u mustbe in thesamelayer as
otherwisewhicheverdiscoveredfirst wouldaddtheothertothenextlayer
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Connected Components (Undirected)

• An undirected graph is connected if for every two 
vertices ,, - ∈ (, there is a path from , to -

• connected component: a maximal subset of 
vertices which are all connected in G
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Connected Components (Undirected)

• Algorithm: 
• Pick a node v
• Use DFS or BFS to find all nodes reachable from v
• Labels those as one connected component
• Repeat until all nodes are in some component
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Connected Components (Undirected)

CC(G):
 // Initialize an empty array and a counter
 let comp[1:n] =	⊥, c = 1
 
 // Iterate through nodes
 for (u = 1,…,n):
  // Ignore this node if it already has a comp.
  // Otherwise, explore it using DFS
  if (comp[u] =  ⊥): 
   run DFS(G,u)
   let comp[v] = c for every v found by DFS
   let c = c + 1
 
 output comp[1:n]



Running Time

CC(G):
 let comp[1:n] =	⊥, c ← 1
 
 for (u = 1,…,n):
  if (comp[u] =  ⊥): 
   run DFS(G,u)
   let comp[v] = c for every v  
         found by DFS
   let c = c + 1
 
 output comp[1:n]
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Connected Components (Undirected)

• Problem: Given an undirected graph ', split it into 
connected components
• Algorithm: Can split a graph into connected 

components in time Θ(1 +3) using DFS
• Punchline: Usually assume graphs are connected

• Implicitly assume that we have already broken the graph 
into CCs in Θ(2 +4) time



Graph Traversals Recap

• Basic Graph Theory:
• Degrees, paths, cycles, trees

• Graph representations:
• Adjacency list and adjacency matrix

• Depth-First Search:
• Discovery and finish times
• Tree, forward, back, and cross edges
• DFS from any node takes 6(2 +4) time

• DAGs:
• No directed cycles, no back edges
• Topological ordering in Θ(2 +4) time 



Graphs and Graph Traversals Recap

• Breadth-First Search:
• Explores from start node, splits nodes into layers
• Min-hop path from start to all other reachable nodes
• BFS from any node takes 6(2 +4) time
• Can be used to determine if undirected graph is bipartite

• Connected components:
• Splits graph into its connected components
• Straightforward Θ(2 +4) time application of DFS and 

BFS
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Strongly Connected Components

• Definition: In a directed graph, we say two vertices 
u and v are strongly connected if there is a path 
from v to u and a path from u to v.
• A strongly connected component is a maximal set 

of vertices all two of which are strongly connected.
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Strongly Connected Components

• Problem: Given a directed graph ', split it into 
strongly connected components
• Input: Directed graph ' = (, )  
• Output: A labeling of the vertices by their strongly 

connected component
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Ask the Audience

• Find all the strongly connected components (SCCs) 
of this directed graph
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Strongly Connected Components

• Observation: SCC(!) is all nodes - ∈ ( such that - 
is reachable from ! and vice versa
• Can find all nodes reachable from # using DFS
• How do we find all nodes that can reach #?

• DFS(') in reverse of the graph!



SCCs by DFS

SCC-Slow():
 GR = G with all edges “reversed”
 
 // Initialize an array and counter
 comp[1:n] =	⊥, c = 1
 
 for (u = 1,…,n):
  // If u has not been explored
  if (comp[u] = ⊥):
   S = set of nodes found by DFS(G,u)
   T = set of nodes found by DFS(GR,u)
   // S ∩ T contains SCC(u)
   label S ∩ T with c
   c = c + 1
 
 return comp

Runs in

n ntm time

antmyaninmtime


