Graphs and Graph Traversals
a. Introduction to Graphs b. Graph Traversals: DFS c. Topological Ordering d. Breadth-First Search

Exploring a Graph

- Problem: Is there a path from s to t ?
- Idea: Explore all nodes reachable from s.
- Two different search techniques:
- Depth-First Search: follow a path until you get stuck, then go back
- Breadth-First Search: explore nearby nodes before moving on to farther away nodes

Breadth-First Search (BFS)

- Informal Description: start at s, find neighbors of s, find neighbors of neighbors of s, and so on...
- BFS Tree:
- $L_{0}=\{s\}$

- $L_{1}=$ all neighbors of L_{0}
- $L_{2}=$ all neighbors of L_{1} that are not in L_{0}, L_{1}
- $L_{3}=$ all neighbors of L_{2} that are not in L_{0}, L_{1}, L_{2}
-...
- $L_{d}=$ all neighbors of L_{d-1} that are not in L_{0}, \ldots, L_{d-1}
- Stop when L_{d+1} is empty

Breadth-First Search in Directed Graphs

Ask the Audience

- BFS this graph from $\boldsymbol{s}=\mathbf{1}$

Breadth-First Search (BFS)

- Definition: the distance between s, t is the number of edges on the shortest path from s to t
- The: BFS finds distances from s to other nodes
- L_{i} contains all nodes at distance i from s
- Nodes not in any layer are not reachable from s

Proof dy inductionon i. Base case $i=0$. Assuring that L_{i-1} includes all

BFS Implementation (Adjacency List)

```
BFS (G = (V,E), s):
    discovered[v] = false }\forallv, layer[v] = \infty \forall
    Let i
    layer[s] = 0
    discovered[s] = true
    while (L}\mp@subsup{L}{i}{}\mathrm{ is not empty):
    Initialize new layer L Li+1
    For (u in Li
        For ((u,v) in E):
        If (discovered[v] = false):
            discovered[v]= true,
            layer[v] = i+1
            parent[v] = u
            Add v to L 
    i=i+1
```

Graphs and Graph Traversals
a. Introduction to Graphs
b. Graph Traversals: DFS
c. Topological Ordering
d. Breadth-First Search
e. Bipartite Graphs and Graph Traversals Recap

Practice Problem: 2-Coloring

- Problem: Tug-of-War
- Need to form two teams $\boldsymbol{R}, \boldsymbol{B}$
- Some students just don't get along
- Input: Undirected graph $G=(V, E)$
- $(u, v) \in E$ means u, v will not be on the same team
- Output: Split V into two sets $\boldsymbol{R}, \boldsymbol{B}$ so that no pair in either set is connected by an edge

2-Coloring (Bipartiteness)

- Equivalent Problem: Is the graph G bipartite?
- G is bipartite if V can be split into two sets L and R such that all edges $(u, v) \in E$ go between L and R

Designing the Algorithm

- Idea for the algorithm:
- BFS the graph, coloring nodes as you find them
- Color nodes in layer i blue if i even, red if i odd
- Go over all edges and check if their endpoints have received different colors.

BFS 2-Coloring Success Implies Bipartite

- Claim: If our algorithm succeeds, the graph is bipartite (i.e., can be 2-colored)
- Proof: Immediate since our algorithm checks validity of the coloring at the end.

BFS 2-Coloring Failure Implies Not Bipartite

- Claim: If our algorithm did not succeed, the graph is not bipartite (i.e., cannot be 2-colored)
- Question: Suppose you have not 2-colored the graph successfully, maybe someone else can do it?

Key Fact

- Key Fact: If G contains a cycle of odd length, then G is not 2-colorable/bipartite

BFS 2-Coloring Failure Implies Not Bipartite

- Claim: If BFS did not 2-color the graph, the graph is not bipartite (i.e., cannot be 2-colored)
- Proof: If BFS fails, then G contains an odd cycle

Since BFS fails, there is an edge (u, v) such that u and v are assigned the same colas. First u and v must be in the same layer, as otherwise whichever discovered first would added the other to the next luger.
Let w be a common ancestor $f u$ and v furthest from the source we claim that $(P(w, u),(u, v), P(v, w))$ is an odd cycle. This is because, $P(w, u)$ and $P(u, \omega)$ have the same lengths.

Graphs and Graph Traversals
a. Introduction to Graphs
b. Graph Traversals: DFS
c. Topological Ordering
d. Breadth-First Search
e. Bipartite Graphs and Graph Traversals Recap
f. Connected Components

Connected Components (Undirected)

- An undirected graph is connected if for every two vertices $u, v \in V$, there is a path from u to v
- connected component: a maximal subset of vertices which are all connected in G

Connected Components (Undirected)

- Algorithm:
- Pick a node v
- Use DFS or BFS to find all nodes reachable from v
- Labels those as one connected component
- Repeat until all nodes are in some component

Connected Components (Undirected)

CC (G) :
// Initialize an empty array and a counter let comp[1:n] = 1 , $c=1$
// Iterate through nodes for ($u=1, \ldots, n$):
// Ignore this node if it already has a comp.
// Otherwise, explore it using DFS
if (comp[u] = \perp):
run $\operatorname{DFS}(G, u)$
let comp[v] = c for every v found by DFS
let $c=c+1$
output comp[1:n]

Running Time

```
        let c = c + 1
```

let comp [1:n] $=1, \mathrm{c} \leftarrow 1$
for ($u=1, \ldots, n$):
if (com pr] = 1):

let comp [v] = c for every v found by DFS
output comp [1:n]

DFS takes $O\left(n+m^{\prime}\right)$ time
Y initialization m^{\prime} is the \# of
reachable eofys from
the source.
Therefore, overall this
tales $O(n+m)$ tines
when nun on all comnecdl components.

Connected Components (Undirected)

- Problem: Given an undirected graph G, split it into connected components
- Algorithm: Can split a graph into connected components in time $\Theta(n+m)$ using DFS
- Punchline: Usually assume graphs are connected
- Implicitly assume that we have already broken the graph into CCs in $\Theta(n+m)$ time

Graph Traversals Recap

- Basic Graph Theory:
- Degrees, paths, cycles, trees
- Graph representations:
- Adjacency list and adjacency matrix
- Depth-First Search:
- Discovery and finish times
- Tree, forward, back, and cross edges
- DFS from any node takes $O(n+m)$ time
- DAGs:
- No directed cycles, no back edges
- Topological ordering in $\Theta(n+m)$ time

Graphs and Graph Traversals Recap

- Breadth-First Search:
- Explores from start node, splits nodes into layers
- Min-hop path from start to all other reachable nodes
- BFS from any node takes $O(n+m)$ time
- Can be used to determine if undirected graph is bipartite
- Connected components:
- Splits graph into its connected components
- Straightforward $\Theta(n+m)$ time application of DFS and BFS

Graphs and Graph Traversals
a. Introduction to Graphs
b. Graph Traversals: DFS
c. Topological Ordering
d. Breadth-First Search
e. Bipartite Graphs and Graph Traversals Recap
f. Connected Components
g. Strongly Connected Components

Strongly Connected Components

- Definition: In a directed graph, we say two vertices u and v are strongly connected if there is a path from v to u and a path from u to v.
- A strongly connected component is a maximal set of vertices all two of which are strongly connected.

Strongly Connected Components

- Problem: Given a directed graph G, split it into strongly connected components
- Input: Directed graph $G=(V, E)$
- Output: A labeling of the vertices by their strongly connected component

Ask the Audience

- Find all the strongly connected components (SCCs) of this directed graph

Strongly Connected Components

- Observation: $\operatorname{SCC}(s)$ is all nodes $v \in V$ such that v is reachable from s and vice versa
- Can find all nodes reachable from s using DFS
- How do we find all nodes that can reach s ?
- DFS(s) in reverse of the graph!

SCCs by DFS

SCC-Slow () :

$G^{\mathrm{R}}=\mathrm{G}$ with all edges "reversed"
// Initialize an array and counter comp[1:n] $=\perp$, c = 1
for ($u=1, \ldots, n$):
// If u has not been explored
if (comp[u] = 1):
S = set of nodes found by DFS (G,u) $\}$ O($n+m$)
$T=$ set of nodes found by $\operatorname{DFS}\left(G^{R}, u\right)$
// S \cap T contains SCC (u)
label $S \cap \mathrm{~T}$ with c
$c=c+1$
return comp

