The Limits of Algorithms

- This class is about problems that can be solved by polynomial-time algorithms
- Given any input of size n, the algorithm runs in time $O\left(n^{c}\right)$ for some constant $c \geq 0$
- Can every problem be solved in polynomial-time?
- No!

The Limits of Algorithms

"I can't find an efficient algorithm. I guess I'm just too dumb."

The Limits of Algorithms

"I can't find an efficient algorithm, because no such algorithm is possible."

The Limits of Algorithms

"I can't find an efficient algorithm, but neither can any of these famous people."

NP-Hardness:

Part 1
 - Problem in P: 2-SAT

P, NP, NP-Complete

- Hard Problems
- Cannot be solved in polynomial time
- Problem Classes
- P - can be solved in poly. time ("easy")
- NP - solutions can be checked in poly. time
- NP-Complete - "hardest" problems in NP
- Reductions
- Used to show "hardness"
- For more: see Sipser's "Intro. To Theory of Computation"

An "Easy" Problem: 2-SAT

- Variables (e.g. X, Y and Z) \& literals (e.g. $X, \sim X ; X$ is true if X is true, ~ X ("not X ") is true if X is false
- 2-Clause: 2 literals ORed together (e.g. $X \vee \sim Z$)
- True if either literal is true, False if both are false
- OR truth table:
- T V T =
- TVF=
- F V T =
- $\mathrm{F} V \mathrm{~F}=$
- 2-SAT:
- Input: A formula of 2-clauses ANDed together
- Question: Is there an assignment of variables that makes the formula true (e.g. that satisfies every clause)
- E.g. $(a \vee \sim b) \wedge(\sim b \vee c) \wedge(\sim a \vee d) \wedge(\sim d \vee \sim c)$

An "Easy" Problem: 2-SAT

- $(a \vee \sim b) \wedge(\sim b \vee c) \wedge(\sim a \vee d) \wedge(\sim d \vee \sim c)$
- Find an assignment that satisfies the above formula, or argue why there isn't one

An "Easy" Problem: 2-SAT

- 2-SAT is "easy" because it can be solved in polynomial time
- Consider a 2-clause ($\mathrm{x} \vee \mathrm{y}$)
- If x is false, then y must be true
- If y is false, then x must be true
- $(x \vee y)$ is equivalent to:

An "Easy" Problem: 2-SAT

- 2-SAT is "easy" because it can be solved in polynomial time
- Consider a 2-clause (x V y)
- If x is false, then y must be true ($\sim_{x->y)}$
- If y is false, then x must be true ($\sim y->x$)
- $* * *$ Equivalent to: ($\sim x->y$) AND ($\sim y->x)$
- Given an instance of 2-SAT, we can create an implication graph G
- Each literal is a node
- Each clause is 2 edges (e.g $(x \vee y)->(\sim x, y),(\sim y, x)$ note: directed graph)
- A path in G from x to y means that if x is true, then y must be true

An "Easy" Problem: 2-SAT

- Each literal is a node, each clause is 2 edges (e.g ($x \vee y$) -> $\left.\left(\sim_{x}, y\right),(\sim y, x)\right)$, a path in G from x to y means that if x is true, then y must be true
- Ex. $(a \vee \sim b) \wedge(b \vee c) \wedge(\sim a \vee d) \wedge(\sim d \vee \sim c)$
- How to check for existence of valid assignment?

An "Easy" Problem: 2-SAT

- If there is a variable x such that there is a path from x to ${ }^{\sim} x$ and from ${ }^{\sim} x$ to x, then the formula is not satisfiable
- Otherwise, it is satisfiable
- Runtime:
- 1 node/variable ->
- 2 edges/clause ->
- For each variable x, check if $\operatorname{PATH}\left(x, \sim^{\sim} x\right)$ AND PATH($\left.x, \sim x\right)$

3-SAT

- Same as 2-SAT, except each clause has 3 literals
- Ex. $(\mathrm{a} \vee \sim \mathrm{b} \vee \mathrm{d}) \wedge(\mathrm{b} \vee \mathrm{c} \vee \mathrm{e}) \wedge(\sim \mathrm{a} \vee \mathrm{b} \vee \mathrm{d}) \wedge(\sim \mathrm{d} \vee \sim \mathrm{e} \vee \sim \mathrm{c})$
- Can you solve this in polynomial time?

NP-Hardness

Part 2

- Problems in NP

A Not-So Easy Problem: 3-SAT

- Same as 2-SAT, except each clause has 3 literals
- Ex. $(\mathrm{a} \vee \sim \mathrm{b} \vee \mathrm{d}) \wedge(\mathrm{b} \vee \mathrm{c} \vee \mathrm{e}) \wedge(\sim a \vee b \vee d) \wedge\left(\sim \mathrm{d} \vee \sim \mathrm{e} \vee \sim^{\sim}\right)$
- Can you solve this in polynomial time?

A Not-So Easy Problem: 3-SAT

- Same as 2-SAT, except each clause has 3 literals
- Ex. $(a \vee \sim b \vee d) \wedge(b \vee c \vee e) \wedge(\sim a \vee b \vee d) \wedge(\sim d \vee \sim e \vee \sim c)$
- Can you solve this in polynomial time? TBD, but probably not
- Solving seems to require trying almost all possibilities

A Not-So Easy Problem: 3-SAT

- Why has no poly. time algorithm been found for 3-SAT?
- Lack of structure in solution space -> no efficient search
- Ways to get rich:
- Prove no poly. time solution exists for 3-SAT
- Find a poly. time solution for 3-SAT

2-SAT \& 3-SAT and P \& NP

- P - can be solved in poly. time ("easy")
- NP - solutions can be checked in poly. time (given a solution, you can verify its correctness in poly. time)
- Which of these problems are in P?
- 2-SAT
- 3-SAT
- Which of these problems are in NP?
- 2-SAT
- 3-SAT

2-SAT \& 3-SAT and P \& NP

- P - can be solved in poly. time ("easy")
- NP - solutions can be checked in poly. time (given a solution, you can verify its correctness in poly. time)
- Which of these problems are in P?
- 2-SAT
- 3-SAT - TBD but unlikely!
- Which of these problems are in NP?
- 2-SAT
- 3-SAT
- Finding a solution is harder than checking one, so $P \subseteq N P$!

Other Problems in NP but not known to be in P

- P - can be solved in poly. time ("easy")
- NP - solutions can be checked in poly. time (given a solution, you can verify its correctness in poly. time)
- 3-SAT
- CLIQUE
- COLORING
- VERTEX COVER
- HAMILTONIAN CYCLE
- TRAVELING SALESMAN
- SUBSET-SUM
- ...

Other Problems in NP but not P

- P - can be solved in poly. time ("easy")
- NP - solutions can be checked in poly. time (given a solution, you can verify its correctness in poly. time)
- \$1M Question: Does P = NP?
- Assuming not, problem X being in NP and not $\mathrm{P} \rightarrow \mathrm{X}$ is hard

NP-Hardness

Part 3

- NP-Completeness

NP-Complete

- P - can be solved in poly. time ("easy")
- NP - solutions can be checked in poly. time (given a solution, you can verify its correctness in poly. time)
- NP-Complete: problems in NP that are "as hard" as any other problem in NP
- Importance of NP-C:

1. If any NP-complete problem can be solved in poly-time $=>P=N P$
2. If you want to show $P \neq N P$, then focus on NP-complete problems

- How do we show one problem is "as hard" as another?

As Hard?

- If a problem A is poly-time reducible to problem B, then B is at least as hard as A
- Ex. If a problem A cannot be solved in poly-time and is polytime reducible to problem B, B also cannot be solved in polytime)
- NP-Complete: problems in NP that are at least "as hard" as any other problem in NP
- If A is NP-Complete, then any problem in NP is poly-time reducible to A.

NP-Hardness

Part 4

- Reductions

Poly-Time Reductions

- Def. Problem A is poly-time reducible to problem B if given an instance X of A, we can create an instance $f(X)$ of B in poly-time such that a solution to $f(X)$ can be used to solve X in poly-time
- Problems
- Instances
- Solutions

A B
$X \xrightarrow{\text { Poly-time }} f(X)$
$S(X) \stackrel{\text { Poly-time }}{\stackrel{ }{2}(f(X)), ~(1) ~}$

- We work with decision problems: YES/NO answers
- Reductions allow us to use complexity class of 1 problem to draw conclusions about more problems

Proof Sketch

- Claim: If a problem A cannot be solved in poly-time and is polytime reducible to problem B, then B cannot be solved in poly-time
- Def. Problem A is poly-time reducible to problem B if given an instance X of A, we can create an instance $f(X)$ of B in poly-time such that a solution to $f(X)$ can be used to solve X in poly-time
- Pf.
- Cor. If A is NP-Complete, and B is in NP, and A is poly-time reducible to B , then B is NP-Complete.

Reduction: 3-SAT -> IndSet

- We saw 3-SAT earlier
- NP-Complete
- Now: IndSet is NP-Complete
- An independent set is a set of nodes such that no two of them are adjacent.

- IndSet: does an independent set of size k exist?
- Claim: IndSet is NP-Complete.

Reduction: 3-SAT -> IndSet

- Def. Problem A is poly-time reducible to problem B if given an instance X of A, we can create an instance $f(X)$ of B in poly-time such that a solution to $f(X)$ can be used to solve X in poly-time.
- Cor: If A is poly-time reducible to B, A is NP-Complete, and B is in NP, then B is NP-Complete.
- Claim: 3SAT is poly-time reducible to IndSet.
- By the Cor above, this implies IndSet is also NP-complete.

Reduction: 3-SAT -> IndSet

- Def. Problem A is poly-time reducible to problem B if given an instance X of A, we can create an instance $f(X)$ of B in polytime such that a solution to $f(X)$ can be used to solve X in polytime.
- Claim: 3SAT is poly-time reducible to IndSet.
- Construction of $\mathrm{f}(\mathrm{X})$:
- $\mathrm{K}=$ number of clauses
- 3 Vertices for each clause, each for a literal
- Add an edge between each literal and its negations
- Add a triangle between literals of each clause

$$
(a \vee b \vee c) \wedge(b \vee \bar{c} \vee \bar{d}) \wedge(\bar{a} \vee c \vee d) \wedge(a \vee \bar{b} \vee \bar{d})
$$

Reduction: 3-SAT -> IndSet

- Def. Problem A is poly-time reducible to problem B if given an instance X of A, we can create an instance $f(X)$ of B in poly-time such that a solution to $f(X)$ can be used to solve X in poly-time.
- Claim: 3SAT is poly-time reducible to IndSet.
$\operatorname{Pf}(->)$ If IndSet is YES $=>3$ 3SAT is YES

Reduction: 3-SAT -> IndSet

- Def. Problem A is poly-time reducible to problem B if given an instance X of A, we can create an instance $f(X)$ of B in poly-time such that a solution to $f(X)$ can be used to solve X in poly-time.
- Claim: 3SAT is poly-time reducible to IndSet.
$\operatorname{Pf}(<-)$ If 3SAT is YES $=>$ IndSet is YES

