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Randomized and the universe

Newtonian physics suggests that the universe 
evolves deterministically. 

Quantum physics says otherwise. 



Randomized and the universe
Does the universe have true randomness? 

Even if it doesn’t, we can still model our uncertainty about things 
using probability. 

Randomness is an essential tool in modeling and analyzing nature. 

It also plays a key role in computer science. 



Randomized in Computer Science
Randomized algorithms (our focus today)

Does randomness speed up computation? 

Statistics via sampling 
e.g. election polls 

Nash equilibrium in Game Theory 
Nash equilibrium always exists if players can have probabilistic 
strategies. 

Cryptography 
A secret is only as good as the entropy/uncertainty in it. 



Randomized in Computer Science
Randomized models for deterministic objects

e.g. the www graph

Quantum computing
Randomness is inherent in quantum mechanics.

Machine learning theory
Data is generated by some probability distribution.

Coding Theory
Encode data to be able to deal with random noise.

...



Randomized Algorithms
How can randomness be used in computation?

Where can it come into the picture?

Given some algorithm that solves a problem...

- What if the input is chosen randomly?

- What if the algorithm can make random choices?



Randomized Algorithms



Randomized Algorithms
A randomized algorithm is an algorithm that is allowed to flip a coin.

(it can make decisions based on the output of the coin flip.)

Today’s lecture:
A randomized algorithm is an algorithm that is allowed to call:
• RandInt(n)
• Bernoulli(p)

(we’ll assume these take O(1) time)



Randomized Algorithms
An Example

For a fixed input (e.g. x = 10)

- the output can vary
- the running time can vary



Randomized Algorithms
For a randomized algorithm, how should we:
• measure its correctness?
• measure its running time?

If we require it to be

- always correct, and
- always runs in time 𝑂 𝑇 𝑛

then we have a deterministic algorithm running in this time.

(Why?)



Randomized Algorithms
So for a randomized algorithm to be interesting:

• it is not correct all the time,    or
• it doesn’t always run in time 𝑂(𝑇(𝑛)) ,

(It either gambles with correctness or running time.)



Types of randomized algorithms
Given an array with n elements (n even). A[1 ... n]. 
Half of the array contains 0s, the other half contains 1s.

Goal: Find an index that contains a 1.



Types of randomized algorithms



Types of randomized algorithms



Types of randomized algorithms
Given an array with n elements (n even). A[1 ... n]. 
Half of the array contains 0s, the other half contains 1s.

Goal: Find an index that contains a 1.



Formal definition: Monte Carlo algorithms
Let 𝑓	be a computational problem.

Suppose 𝐴 is a randomized algorithm such that
 
 ∀ input 𝑥: Pr 𝐴 𝑥 	≠ 𝑓 𝑥 ≤ 𝜖

 ∀ input 𝑥: # Steps 𝐴(𝑥) takes is ≤ 𝑇( 𝑥 )
   (no matter what random choices are)

Then we say 𝐴 is a 𝑇(𝑛)-time Monte Carlo algorithm for problem 𝑓 
with 𝜖 probability of error.



Formal definition: Las Vegas algorithms
Let 𝑓	be a computational problem.

Suppose 𝐴 is a randomized algorithm such that
 
 ∀ input 𝑥: 𝐴 𝑥 = 𝑓(𝑥)

 ∀ input 𝑥: 𝐸[#	steps 𝐴(𝑥) takes] ≤ 𝑇( 𝑥 ).

Then we say 𝐴 is a 𝑇(𝑛)-time Las Vegas algorithm for problem 𝑓.



We will discuss two randomized algorithms:

Example of a Monte Carlo algorithm: 
Min Cut

Example of a Las Vegas algorithm:
QuickSort



Example of a Monte Carlo Algorithm (Min Cut)

Gambles with correctness.
Doesn’t gamble with running time.



Cut Problems
Max Cut Problem 

Given a graph 𝐺	 = 	 (𝑉, 𝐸),
color the vertices red and blue so that the number of edges with 
two colors (e = {u,v}) is maximized.

red blue



Cut Problems
Max Cut Problem 

Given a graph 𝐺	 = 	 (𝑉, 𝐸),
find a non-empty subset 𝑆 ⊂ 𝑉 such that
number of edges from 𝑆 to 𝑉 − 𝑆 is maximized.

Size of the cut = # edges from 𝑆 to 𝑉	 − 𝑆.



Cut Problems
Min Cut Problem 

Given a graph 𝐺	 = 	 (𝑉, 𝐸),
find a non-empty subset 𝑆 ⊂ 𝑉 such that
number of edges from 𝑆 to 𝑉 − 𝑆 is minimized.

Size of the cut = # edges from 𝑆 to 𝑉	 − 𝑆.



A Monte Carlo Min Cut Algorithm
Contraction algorithm for min cut

a

c

b

e

d

Select an edge randomly:

Green edge selected.

Contract that edge.

Size of min-cut: 2



A Monte Carlo Min Cut Algorithm
Contraction algorithm for min cut

a

c

b

e

d

Select an edge randomly:

Green edge selected.

Contract that edge.

Size of min-cut: 2
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Contraction algorithm for min cut

Select an edge randomly:

Green edge selected.

Contract that edge. (delete self loops)

Size of min-cut: 2



A Monte Carlo Min Cut Algorithm

a

c

b
e

d

Contraction algorithm for min cut

Purple edge selected.

Contract that edge. (delete self loops)

Size of min-cut: 2Select an edge randomly:



A Monte Carlo Min Cut Algorithm

a

c

b
e

d

Contraction algorithm for min cut

Purple edge selected.

Contract that edge. (delete self loops)

Size of min-cut: 2Select an edge randomly:



A Monte Carlo Min Cut Algorithm

a

c

b
e

d

Contraction algorithm for min cut

Blue edge selected.

Contract that edge. (delete self loops)

Size of min-cut: 2Select an edge randomly:



A Monte Carlo Min Cut Algorithm

a

c

b
e

d

Contraction algorithm for min cut

Blue edge selected.

Contract that edge. (delete self loops)

Size of min-cut: 2Select an edge randomly:



A Monte Carlo Min Cut Algorithm

a

c

b
e

d

Contraction algorithm for min cut

Blue edge selected.

Contract that edge.

When two vertices remain, you have your cut:

{a, b, c, d} {e} size:  2

(delete self loops)

Size of min-cut: 2Select an edge randomly:



A Monte Carlo Min Cut Algorithm
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e

d

Contraction algorithm for min cut

Green edge selected.

Contract that edge. (delete self loops)

Size of min-cut: 2Select an edge randomly:



A Monte Carlo Min Cut Algorithm
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d

Contraction algorithm for min cut

Green edge selected.

Contract that edge. (delete self loops)

Size of min-cut: 2Select an edge randomly:



A Monte Carlo Min Cut Algorithm

a

c
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e

d

Contraction algorithm for min cut

Yellow edge selected.

Contract that edge. (delete self loops)

Size of min-cut: 2Select an edge randomly:



A Monte Carlo Min Cut Algorithm

a

c

b
e

d

Contraction algorithm for min cut

Yellow edge selected.

Contract that edge. (delete self loops)

Size of min-cut: 2Select an edge randomly:



A Monte Carlo Min Cut Algorithm

a

c

b
e

d

Contraction algorithm for min cut

Red edge selected.

Contract that edge. (delete self loops)

Size of min-cut: 2Select an edge randomly:



A Monte Carlo Min Cut Algorithm

a

c

b
e

d

Contraction algorithm for min cut

Red edge selected.

Contract that edge. (delete self loops)

Size of min-cut: 2Select an edge randomly:



A Monte Carlo Min Cut Algorithm

a

c

b
e

d

Contraction algorithm for min cut

Red edge selected.

Contract that edge.

When two vertices remain, you have your cut:

{a} {b,c,d,e} size: 3

(delete self loops)

Size of min-cut: 2Select an edge randomly:



G = G0 �! G1 �! G2 �! · · · �! Gn�2

verticesn vertices2

contract contract contract contract

n� 2 iterations

For any   :  A cut in       of size     corresponds exactly to  Gi k

a cut in       of size    .kG

i

Observation:
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Poll

Let     be the size of a minimum cut.k

Which of the following are true (can select more than one):

For every       ,Gi k  min
v

degGi
(v)

For               ,G = G0 k  min
v

degG(v)

For every       ,Gi

For               ,G = G0 k � min
v

degG(v)

k � min
v

degGi
(v)



Poll

For every       ,Gi k  min
v

degGi
(v)

i.e., for every        and every              ,Gi v 2 Gi k  degGi
(v)

Why?

Same cut exists in original graph.

This cut has size                    .deg(a) = 3

A single vertex     forms a cut of size             .v deg(v)

k  3.So

a

c

b
e

d
Gi



Contraction algorithm for min cut
Contraction algorithm for min cut

Should we be impressed?

- The algorithm runs in polynomial time.

- There are exponentially many cuts. (~     )2n~

- There is a way to boost the probability of success to

1� 1

en
(and still remain in polynomial time)

Let                    be a graph with n vertices. 
The probability that the contraction algorithm will 
output a min-cut is              .                     

Theorem:
G = (V,E)

� 1/n2



Proof of theorem
Proof of theorem

Fix some minimum cut. S V � S

F

|F| = k
|V| = n
|E| = m

Pr[algorithm outputs F ] � 1/n2Will show

(Note                                                              )Pr[success] � Pr[algorithm outputs F ]



Proof of theorem
Proof of theorem

Fix some minimum cut. S V � S

F

When does the algorithm output F ?

What if the algorithm picks an edge in     to contract?F
Then it cannot output F.

What if it never picks an edge in     to contract?F
Then it will output F.

|F| = k
|V| = n
|E| = m



Proof of theorem
Proof of theorem

Pr[algorithm outputs F ] =

Pr[algorithm never contracts an edge in F ]

      = an edge in F is contracted in iteration   .Ei i

Pr[E1 \ E2 \ · · · \ En�2]

=

Fix some minimum cut. S V � S

F

|F| = k
|V| = n
|E| = m



Proof of theorem

Let        = an edge in F is contracted in iteration   .Ei i

Proof of theorem

Goal:

Pr[E1 \ E2 \ · · · \ En�2]

= Pr[E1] · Pr[E2|E1] · Pr[E3|E1 \ E2]

Pr[En�2|E1 \ E2 \ · · · \ En�3]

· · ·

Pr[E1 \ E2 \ · · · \ En�2] � 1/n2.

want to write in terms of k and n 

chain
rule

Pr[E1] Pr[E1]= 1� = 1� # edges in F

total # edges
= 1� k

m



Proof of theorem
Proof of theorem

Recall: 
X

v2V

deg(v) = 2m =) 2m � kn

Let        = an edge in F is contracted in iteration   .Ei

Goal: Pr[E1 \ E2 \ · · · \ En�2] � 1/n2.

Observation: 8v 2 V : k  deg(v)
S

V � S

v

i

� kn =) m � kn

2

Pr[E1] = 1� k

m
=

✓
1� 2

n

◆
� 1� k

kn/2



Proof of theorem
Proof of theorem

Pr[E1 \ E2 \ · · · \ En�2]

Pr[En�2|E1 \ E2 \ · · · \ En�3]

·Pr[E2|E1] · Pr[E3|E1 \ E2] · · ·�
✓
1� 2

n

◆

Pr[E2|E1] = 1� Pr[E2|E1]= 1� k

# remaining edges

want to write in terms of k and n 

Let        = an edge in F is contracted in iteration   .Ei

Goal: Pr[E1 \ E2 \ · · · \ En�2] � 1/n2.

i



Proof of theorem
Proof of theorem

Let        = an edge in F is contracted in iteration   .Ei

Goal: Pr[E1 \ E2 \ · · · \ En�2] � 1/n2.

i

Let                         be the graph after iteration 1. G0 = (V 0, E0)

Observation: 8v 2 V 0 : k  degG0(v)
X

v2V 0

degG0(v) = 2|E0|

� k(n� 1)

=) 2|E0| � k(n� 1)

=) |E0| � k(n� 1)

2

Pr[E2|E1] = 1� k

|E0| =

✓
1� 2

n� 1

◆
� 1� k

k(n� 1)/2



Proof of theorem
Proof of theorem

Pr[E1 \ E2 \ · · · \ En�2]

Pr[En�2|E1 \ E2 \ · · · \ En�3]

�
✓
1� 2

n

◆
·
✓
1� 2

n� 1

◆
· Pr[E3|E1 \ E2] · · ·

Let        = an edge in F is contracted in iteration   .Ei

Goal: Pr[E1 \ E2 \ · · · \ En�2] � 1/n2.

i



Proof of theorem
Proof of theorem

Pr[E1 \ E2 \ · · · \ En�2]

Let        = an edge in F is contracted in iteration   .Ei

Goal: Pr[E1 \ E2 \ · · · \ En�2] � 1/n2.

i

�
✓
1� 2

n

◆✓
1� 2

n� 1

◆✓
1� 2

n� 2

◆
· · ·

✓
1� 2

n� (n� 4)

◆✓
1� 2

n� (n� 3)

◆

=

✓
n� 2

n

◆✓
n� 3

n� 1

◆✓
n� 4

n� 2

◆✓
n� 5

n� 3

◆
· · ·

✓
2

4

◆✓
1

3

◆

=
2

n(n� 1)
� 1

n2



Contraction algorithm for min cut
Contraction algorithm for min cut

Should we be impressed?

- The algorithm runs in polynomial time.

- There are exponentially many cuts. (~     )2n~

- There is a way to boost the probability of success to

1� 1

en
(and still remain in polynomial time)

Let                    be a graph with n vertices. 
The probability that the contraction algorithm will 
output a min-cut is              .                     

Theorem:
G = (V,E)

� 1/n2



Contraction algorithm for min cut
Contraction algorithm for min cut

Should we be impressed?

- The algorithm runs in polynomial time.

- There are exponentially many cuts. (~     )2n~

- There is a way to boost the probability of success to

(and still remain in polynomial time)1� 1

en

Theorem:
Let                    be a graph with n vertices. 
The probability that the contraction algorithm will 
output a min-cut is              .                     

Theorem:
G = (V,E)

� 1/n2



Boosting phase
Boosting phase

Run the algorithm t times using fresh random bits.
Output the smallest cut among the ones you find.

G G G G

Contraction
Algorithm

Contraction
Algorithm

Contraction
Algorithm

Contraction
Algorithm

…

…

…F1 F2 FtF3

Output the minimum among      ’s.Fi

larger                 better success probabilityt =)

What is the relation between    and success probability?t



Boosting phase
Boosting phase

Let        = in the i’th repetition, we don’t find a min cut. Ai

= Pr[A1] Pr[A2] · · ·Pr[At]

= Pr[A1]
t 

✓
1� 1

n2

◆t

What is the relation between    and success probability?t

Pr[error]

= Pr[A1 \A2 \ · · · \At]
ind.

events

= Pr[don’t find a min cut]



Boosting phase
Boosting phase

Pr[error] 
✓
1� 1

n2

◆t

Extremely useful inequality: 8x 2 R : 1 + x  ex



Boosting phase
Boosting phase

Pr[error] 
✓
1� 1

n2

◆t

Extremely useful inequality: 8x 2 R : 1 + x  ex

x = �1/n2Let

t = n3 =) Pr[error]  e�n3/n2

= 1/en

 (ex)t = ext = e�t/n2

Pr[success] � 1� 1

en

=)

Pr[error]  (1 + x)t



Conclusion for min cutConclusion for min cut

We have a polynomial time algorithm that solves 
the min cut problem with probability               .1� 1/en

Theoretically, not equal to 1.
Practically, equal to 1.



We can boost the success probability of 
Monte Carlo algorithms via repeated trials.

Important Note

Boosting is not specific to Min-cut algorithm.



Example of a Las Vegas Algorithm (QuickSort)

Always correct.
Gambles with running time.



QuickSort

Quicksort Algorithm

8 2 7 99 5 04

On input S = (x1, x2, . . . , xn)

If            ,  return n  1 S-



QuickSort

Quicksort Algorithm

8 2 7 99 5 04

On input S = (x1, x2, . . . , xn)

If            ,  return n  1 S

Pick uniformly at random a  “pivot” xm

-

-



QuickSort

Quicksort Algorithm

8 2 7 99 5 0

4

On input S = (x1, x2, . . . , xn)

If            ,  return n  1 S-

Pick uniformly at random a  “pivot” xm-



QuickSort

Quicksort Algorithm

8 2 7 99 5 0

On input S = (x1, x2, . . . , xn)

If            ,  return n  1 S

Compare       to all other    ’s xm x

Let                                   ,S1 = {xi : xi < xm} S2 = {xi : xi > xm}

-

-

-

4

Pick uniformly at random a  “pivot” xm-



QuickSort

Quicksort Algorithm

8 7 99 5

On input S = (x1, x2, . . . , xn)

If            ,  return n  1 S

Compare       to all other    ’s xm x

Let                                   ,S1 = {xi : xi < xm} S2 = {xi : xi > xm}

-

-

-

42 0

S1

Pick uniformly at random a  “pivot” xm-



QuickSort

Quicksort Algorithm

8 7 99 5

On input S = (x1, x2, . . . , xn)

If            ,  return n  1 S

Compare       to all other    ’s xm x

Let                                   ,S1 = {xi : xi < xm} S2 = {xi : xi > xm}

-

-

-

42 0

S1 S2

Pick uniformly at random a  “pivot” xm-



QuickSort

Quicksort Algorithm

8 7 99 5

On input S = (x1, x2, . . . , xn)

If            ,  return n  1 S

Compare       to all other    ’s xm x

Let                                   ,S1 = {xi : xi < xm} S2 = {xi : xi > xm}

-

-

-

42 0

S1 S2

Recursively sort        and      .S1 S2-

Pick uniformly at random a  “pivot” xm-



QuickSort

Quicksort Algorithm

5 7 8 99

On input S = (x1, x2, . . . , xn)

If            ,  return n  1 S

Compare       to all other    ’s xm x

Let                                   ,S1 = {xi : xi < xm} S2 = {xi : xi > xm}

-

-

-

40 2

S1 S2

Recursively sort        and      .S1 S2-

Pick uniformly at random a  “pivot” xm-



QuickSort

Quicksort Algorithm

5 7 8 99

On input S = (x1, x2, . . . , xn)

If            ,  return n  1 S

Compare       to all other    ’s xm x

Let                                   ,S1 = {xi : xi < xm} S2 = {xi : xi > xm}

-

-

-

40 2

S1 S2

Recursively sort        and      .S1 S2-

Return [S1, xm, S2]-

Pick uniformly at random a  “pivot” xm-



QuickSortQuicksort Algorithm

This is a Las Vegas algorithm:

- always gives the correct answer

- running time can vary depending on our luck

It is not too difficult to show that the expected run-time is

 2n lnn = O(n log n).

In practice, it is basically the fastest sorting algorithm!



Final RemarksFinal remarks

Another (morally) million dollar question:
Does every efficient randomized algorithm have an 
efficient deterministic counterpart?

P = BPPIs                 ?

Randomized algorithms can be faster and much more 
elegant than their deterministic counterparts.

There are some interesting problems for which: 
   - there is a poly-time randomized algorithm,
   - we can’t find a poly-time deterministic algorithm.

Randomness adds an interesting dimension to 
computation.


