Divide and Conquer: Recap

- Handle base case with small inputs
- Divide problem into smaller part(s)
- May require careful thought, take time in the algorithm
- Recurse in appropriate smaller part(s)
- Combine the solutions returned in recursive calls
- May require careful thought, take time in the algorithm
- Prove correctness, often using induction
- Establish recurrence relation for running time
- Solve recurrence using one of:
- Master Theorem
- Recursion Tree
- Formulate a conjecture and prove by induction

CS5800: Algorithms

Dynamic Programming
a. Fibonacci Series

Fibonacci Numbers

$F(1) F(2)$

- $0,1,1,2,3,5,8,13,21,34,55, \ldots$
- $F(1)=0, F(2)=1$, $F(n)=F(n-1)+F(n-2)$
- $F(n) \rightarrow \phi^{n} \approx 1.62^{n}$ asymptotically q out of the scape ff this course

Fibonacci's Liber Abaci (1202)

Fibonacci Numbers: Take I

```
REcFibo(n):
    if }n=
        return 0
    else if n=1
        return 1
    else
        return RecFibo(n-1)+\operatorname{RecFibo}(n-2)
```


Fibonacci Numbers: Take I

Fibonacci Numbers: Take I

```
RecFibo( \(n\) ):
    if \(n=0\)
        return 0
    else if \(n=1\)
        return 1
    else
        return \(\operatorname{RecFibo}(n-1)+\operatorname{RecFibo}(n-2)\)
```

- How many calls does RecFibo (n) make?

Let $T(n)=$ total \#f rec calls to Rec Fibo when RecFibo(n) called

$$
\begin{array}{llllllllll}
T(n)=T(n-1)+T(n-2)+1 & T(0)=1 & T(1)=1 \\
F: 0 & 1 & 1 & 2 & 5 & 8 & 13 & 21 & T(n)=2 F(n+1)-1 \\
T: 1 & 1 & 3 & 5 & 9 & 15 & 25 & 41 & \Rightarrow T(n)=\theta\left(1.62^{n}\right)
\end{array}
$$

Fibonacci Numbers: Memo(r)ization

$$
\begin{aligned}
& \left.\frac{\operatorname{MemFibo}(n):}{\text { if } n=0} \begin{array}{l}
\text { return } 0 \\
\text { else if } n=1 \\
\quad \text { return } 1
\end{array}\right\} \text { Base cases } \\
& \text { else glabal array } \\
& \quad \begin{array}{l}
\text { if } F[n] \text { is undefined } \\
\begin{array}{l}
F[n] \leftarrow \operatorname{MemFibo}(n-1)+\operatorname{MEMFibo}(n-2)
\end{array} \\
\quad \text { return } F[n]
\end{array} \\
& \hline
\end{aligned}
$$

- How many recursive calls does MemFibo (n) make?

Fibonacci Numbers: Memo(r)ization

Claim: every element $F[i]$ is accessed at most 3 times.
$F[i]$ is accessed by the first calls to MemFIBOO $(i+1)$, MemFIBO $(i+2)$

```
\(\frac{\operatorname{MemFibo}(n):}{\text { if } n=0 \quad n}=7\)
        return 0
    else if \(n=1\)
        return 1
    else
        if \(F[n]\) is undefined \(\quad n=6 \quad n=5\)
        \(F[n] \leftarrow \operatorname{MEmFibo}(n-1)+\operatorname{MemFibo}(n-2)\)
    return \(F[n]\)
```


Fibonacci Numbers: Bottom up

- What is the running time of IterFibo (n) ?

Fibonacci Numbers

- $0,1,1,2,3,5,8,13,21,34,55, \ldots$
- $F(n)=F(n-1)+F(n-2)$
- Solving the recurrence recursively takes $\Omega\left(1.62^{n}\right)$ time
- Problem: Recompute the same values $F(i)$ many times
- Two ways to improve the running time $\rightarrow O(n)$
- Remember values you've already computed ("top down")
- Iterate over all values $F(i)$ ("bottom up")
- Fact: Fastest algorithms solve in logarithmic time

Dynamic Programming Recipe

- Recipe:
(1) identify a set of subproblems
(2) relate the subproblems via a recurrence
(3) find an efficient implementation of the recurrence (top down or bottom up)
(4) reconstruct the solution from the DP table

Dynamic Programming
a. Fibonacci Series
b. Weighted Interval Scheduling

Weighted Interval Scheduling

- How can we optimally schedule a resource?
- This classroom, a computing cluster, ...
shand fith internt
finioh rime findemal i
- Input: n intervals $\left(s_{i}, f_{i}\right)$ each with value v_{i}
- Assume intervals are sorted so $f_{1}<f_{2}<\cdots<f_{n}$
- Output: a compatible schedule S maximizing the total value of all intervals
- A schedule is a subset of intervals $S \subseteq\{1, \ldots, n\}$
- A schedule S is compatible if no $i, j \in S$ overlap
- The total value of S is $\sum_{i \in S} v_{i}$

Interval Scheduling

Index

$$
v_{1}=2
$$

$$
2 \quad v_{2}=4
$$

$$
v_{3}=4
$$

$$
4
$$

$$
v_{4}=7
$$

$$
5
$$

$$
v_{5}=2
$$

$$
v_{6}=1
$$

A Recursive Formulation

- Let O be the optimal schedule
- Case 1: Final interval is not in O (i.e. $6 \notin O$)
- Then O must be the optimal solution for $\{1, \ldots, 5\}$

Index

A Recursive Formulation

- Let O be the optimal schedule
- Case 2: Final interval is in O (i.e. $6 \in O$)
- Then O must be $\{6\}$ + the optimal solution for $\{1, \ldots, 3\}$

Index

A Recursive Formulation

Which is better?

- the optimal solution for $\{1, \ldots, 5\}$
- $\{6\}+$ the optimal solution for $\{1, \ldots, 3\}$

Index

A Recursive Formulation: Subproblems

$$
\text { Final salution }=O_{n}
$$

- Subproblems: Let O_{i} be the optimal schedule using only the intervals $\{1, \ldots, i\}$
- Case 1: Final interval is not in $O_{i}\left(i \notin O_{i}\right)$
- Then O_{i} must be the optimal solution for $\{1, \ldots, i-1\}$
- $O_{i}=O_{i-1}$
- Case 2: Final interval is in $O_{i}\left(i \in O_{i}\right)$
- Assume intervals are sorted so that $f_{1}<f_{2}<\cdots<f_{n}$
- Let $p(i)$ be the largest j such that $f_{j}<s_{i}$
- Then O_{i} must be $i+$ the optimal solution for $\{1, \ldots, p(i)\}$
- $O_{i}=\{i\}+O_{p(i)}$

A Recursive Formulation: Subproblems \& Recurrence

- Subproblems: Let $O P T(i)$ be the value of the optimal schedule using only the intervals $\{1, \ldots, i\}$
$\left(O P T(i)=\operatorname{value}\left(O_{i}\right)\right)$
- Case 1: Final interval is not in $O_{i}\left(i \notin O_{i}\right)$
- Then O_{i} must be the optimal solution for $\{1, \ldots, i-1\}$
- Case 2: Final interval is in $O_{i}\left(i \in O_{i}\right)$
- Assume intervals are sorted so that $f_{1}<f_{2}<\cdots<f_{n}$
- Let $p(i)$ be the largest j such that $f_{j}<s_{i}$
- Then O_{i} must be $i+$ the optimal solution for $\{1, \ldots, p(i)\}$
- OPT $(i)=\max \left\{O P T(i-1), v_{i}+O P T(p(i))\right\}$
- $\operatorname{OPT}(0)=0, O P T(1)=v_{1}$

Dynamic Programming Recipe

- Recipe:
(1) identify a set of subproblems
(2) relate the subproblems via a recurrence
(3) find an efficient implementation of the recurrence (top down or bottom up)
(4) reconstruct the solution from the DP table

Interval Scheduling: Straight Recursion

```
// All inputs are global vars
FindOPT(n):
    if (n = 0): return 0
    elseif (n = 1): return vi
    else:
        return max{FindOPT(n-1), von + FindOPT(p(n))}
```

- What is the worst-case running time of FindOPT (n) (how many recursive calls)?

Interval Scheduling: Top Down

```
// All inputs are global vars
M}\leftarrow\mathrm{ empty array, M[0] }\leftarrow0, M[1] \leftarrow v (1
FindOPT(n):
    if (M[n] is not empty): return M[n]
    else:
        M[n] \leftarrow max{FindOPT(n-1), v
        return M[n]
```

- What is the running time of FindOPT (n) ?

Interval Scheduling: Top Down

Index

2

$$
v_{3}=4
$$

3

4
5
6

$M[0]$	$M[1]$	$M[2]$	$M[3]$	$M[4]$	$M[5]$	$M[6]$
0	2					

Interval Scheduling: Bottom Up

```
// All inputs are global vars
FindOPT (n) :
    \(\mathrm{M}[0] \leftarrow 0, \quad \mathrm{M}[1] \leftarrow \mathrm{v}_{1}\)
    for (i \(=2, \ldots, n\) ):
        \(M[i] \leftarrow \max \left\{M[i-1], v_{i}+M[p(i)]\right\}\)
    return \(M[n]\)
```

- What is the running time of FindOPT (n) ?

Interval Scheduling: Bottom Up

Index

5
6

$$
\begin{gathered}
v_{5}=2 \\
v_{6}=1
\end{gathered}
$$

M[0]	$\mathrm{M}[1]$	$\mathrm{M}[2]$	$\mathrm{M}[3]$	$\mathrm{M}[4]$	$\mathrm{M}[5]$	$\mathrm{M}[6]$

Finding the Optimal Solution

- But we want a schedule, not a value!

Index

$\mathrm{M}[0]$	$\mathrm{M}[1]$	$\mathrm{M}[2]$	$\mathrm{M}[3]$	$\mathrm{M}[4]$	$\mathrm{M}[5]$	$\mathrm{M}[6]$
0	2	4	6	7	8	8

Dynamic Programming Recipe

- Recipe:
(1) identify a set of subproblems
(2) relate the subproblems via a recurrence
(3) find an efficient implementation of the recurrence (top down or bottom up)
(4) reconstruct the solution from the DP table

Finding the Optimal Solution

```
// All inputs are global vars
FindSched (M,n):
    if (n = 0): return \emptyset
    elseif (n = 1): return {1}
    elseif (vn}+M[p(n)] > M[n-1]):
        return {n} + FindSched(M,p(n))
    else:
        return FindSched(M,n-1)
```

- What is the running time of FindSched (n) ?

Finding the Optimal Solution

Index

$2 \longmapsto v_{2}=4$

5
6

$M[0]$	$M[1]$	$M[2]$	$M[3]$	$M[4]$	$M[5]$	$M[6]$
0	2	4	6	7	8	8

How much space is used?

Index

$\mathrm{M}[0]$	$\mathrm{M}[1]$	$\mathrm{M}[2]$	$\mathrm{M}[3]$	$\mathrm{M}[4]$	$\mathrm{M}[5]$	$\mathrm{M}[6]$
0	2	4	6	7	8	8

Now You Try

1 \square

$$
p(1)=0
$$

2

$$
v_{2}=1
$$

$$
p(2)=1
$$

3
$v_{3}=6$

$$
p(3)=0
$$

4
$v_{4}=5$

$$
p(4)=2
$$

5

$$
v_{6}=2 \quad p(6)=4
$$

$M[0]$	$M[1]$	$M[2]$	$M[3]$	$M[4]$	$M[5]$	$M[6]$

Dynamic Programming Recap

- Express the optimal solution as a recurrence
- Identify a small number of subproblems
- Relate the optimal solution on subproblems
- Efficiently solve for the value of the optimum
- Simple implementation is exponential time, but topdown and bottom-up are linear time
- Top-Down: recursive, store solution to subproblems
- Bottom-Up: iterate through subproblems in order
- Find the solution using the table of values

