Survey Results

- How engaged do you feel in class?

- Very engaged

Somewhat engaged
Somewhat disengaged

- Very disengaged

Survey Results

-What do you think about the pace of the lectures?

Too slow

- Appropriate

Too fast

Survey Results

- Do you attend the office hours? If yes, have they been helpful?

Very helpful
Somewhat helpful
Somewhat unhelpful
Very unhelpful

Survey Results

- What do you think about the difficulty of homework 1 ?

Too easy
Appropriate
Somewhat hard
Very hard

Dynamic Programming Recipe

- Recipe:
(1) identify a set of subproblems
(2) relate the subproblems via a recurrence
(3) find an efficient implementation of the recurrence (top down or bottom up)
(4) reconstruct the solution from the DP table

Dynamic Programming

a. Fibonacci Series
b. Weighted Interval Scheduling

Weighted Interval Scheduling

- How can we optimally schedule a resource?
- This classroom, a computing cluster, ...
- Input: n intervals (s_{i}, f_{i}) each with value v_{i}
- Assume intervals are sorted so $f_{1}<f_{2}<\cdots<f_{n}$
- Output: a compatible schedule S maximizing the total value of all intervals
- A schedule is a subset of intervals $S \subseteq\{1, \ldots, n\}$
- A schedule S is compatible if no $i, j \in S$ overlap
- The total value of S is $\sum_{i \in S} v_{i}$

Interval Scheduling
$p(i):$ largest j st. $f_{j} \leqslant s_{i}$

Index
\qquad
2

$$
v_{2}=4
$$

$$
p(2)=e
$$

3

$$
v_{3}=4
$$

$$
p(3)=1
$$

4

$$
v_{4}=7
$$

$$
p(4)=0
$$

5

$$
\begin{array}{ll}
v_{5}=2 & P(5)=3 \\
\stackrel{v_{6}=1}{\longmapsto} & P(6)=3
\end{array}
$$

6

$$
O_{6}=\left\{\begin{array}{l}
O_{5} \\
v_{6}+v_{a l}\left(O_{p(6)}\right)
\end{array}\right.
$$

A Recursive Formulation: Subproblems

- Subproblems: Let O_{i} be the optimal schedule using only the intervals $\{1, \ldots, i\}$
- Case 1: Final interval is not in $O_{i}\left(i \notin O_{i}\right)$
- Then O_{i} must be the optimal solution for $\{1, \ldots, i-1\}$
- $O_{i}=O_{i-1}$
- Case 2: Final interval is in $O_{i}\left(i \in O_{i}\right)$
- Assume intervals are sorted so that $f_{1}<f_{2}<\cdots<f_{n}$
- Let $p(i)$ be the largest j such that $f_{j}<s_{i}$
- Then O_{i} must be $i+$ the optimal solution for $\{1, \ldots, p(i)\}$
- $O_{i}=\{i\}+O_{p(i)}$

A Recursive Formulation: Subproblems \& Recurrence

- Subproblems: Let $O P T(i)$ be the value of the optimal schedule using only the intervals $\{1, \ldots, i\}$
$\left(O P T(i)=\operatorname{value}\left(O_{i}\right)\right)$
- Case 1: Final interval is not in $O_{i}\left(i \notin O_{i}\right)$
- Then O_{i} must be the optimal solution for $\{1, \ldots, i-1\}$
- Case 2: Final interval is in $O_{i}\left(i \in O_{i}\right)$
- Assume intervals are sorted so that $f_{1}<f_{2}<\cdots<f_{n}$
- Let $p(i)$ be the largest j such that $f_{j}<s_{i}$
- Then O_{i} must be $i+$ the optimal solution for $\{1, \ldots, p(i)\}$
- OPT $(i)=\max \left\{O P T(i-1), v_{i}+O P T(p(i))\right\}$
- $\operatorname{OPT}(0)=0, O P T(1)=v_{1}$

Dynamic Programming Recipe

- Recipe:
(1) identify a set of subproblems
(2) relate the subproblems via a recurrence
(3) find an efficient implementation of the recurrence (top down or bottom up)
(4) reconstruct the solution from the DP table

Interval Scheduling: Straight Recursion

FindOPT (n) :

```
    if (n = 0): return 0
```

 elseif \((n=1)\) : return \(v_{1}\)
 else:
 return max \(\left\{\right.\) FindOPT \(\left.(\mathrm{n}-1), \mathrm{v}_{\mathrm{n}}+\operatorname{FindOPT}(\mathrm{p}(\mathrm{n}))\right\}\)
 - What is the worst-case running time of FindOPT (n) (how many recursive calls)?

Interval Scheduling: Memoized

```
// All inputs are global vars
M}\leftarrow\mathrm{ empty array, M[0] }\leftarrow0, M[1] \leftarrow v (1
FindOPT(n):
    if (M[n] is not empty): return M[n]
    else:
        M[n] \leftarrow max{FindOPT(n-1), v
        return M[n]
```

- What is the running time of FindOPT (n) ?

Interval Scheduling: Memoized

Index

$$
\begin{aligned}
& P(1)=01 \longmapsto \begin{array}{l}
v_{1}=2 \\
P(2)=0
\end{array} \quad \downarrow
\end{aligned}
$$

$$
p(3)=13
$$

$$
p(4)=a^{4}
$$

$$
P(5)=35
$$

$$
p(6)=3^{6}
$$

$$
M[3]=\quad \max \{M[2], 4+M[1]\}
$$

$$
M[5]=\max \{M[4], 2+M[3]\}
$$

$$
M[b]=\max \{M[5], 1+M[3]\}
$$

$M[0]$	$M[1]$	$M[2]$	$M[3]$	$M[4]$	$M[5]$	$M[6]$
0	2	4	6	7	8	8

Interval Scheduling: Bottom Up

```
FindOPT(n):
M[0]}\leftarrow0, M[1]\leftarrow v ( I
for (i = 2,\ldots,n):
    M[i] \leftarrow max{M[i-1], vi
return M[n]
```

- What is the running time of FindOPT (n) ?

Interval Scheduling: Bottom Up

Index

5

M[0]	M[1]	M[2]	M[3]	M[4]	M[5]	M[6]
0	2	4				

Finding the Optimal Solution

- But we want a schedule, not a value!

Index

$\mathrm{M}[0]$	$\mathrm{M}[1]$	$\mathrm{M}[2]$	$\mathrm{M}[3]$	$\mathrm{M}[4]$	$\mathrm{M}[5]$	$\mathrm{M}[6]$
0	2	4	6	7	8	8

Dynamic Programming Recipe

- Recipe:
(1) identify a set of subproblems
(2) relate the subproblems via a recurrence
(3) find an efficient implementation of the recurrence (top down or bottom up)
$\{$ (4) reconstruct the solution from the DP table

Finding the Optimal Solution DP Table which we assume is arcady filled up

 FindSched (M, n) :```
 if (n = 0): return \emptyset
```

    elseif ( \(\mathrm{n}=1\) ): return \(\{1\}\)
    elseif \(\left(v_{n}+M[p(n)]>M[n-1]\right)\) :
        return \(\{\mathrm{n}\}+\) FindSched \((\mathrm{M}, \mathrm{p}(\mathrm{n}))\)
    else:
        return FindSched (M,n-1)
    

- What is the running time of FindSched $(\mathrm{n})^{\underline{\mathrm{E}} \mathrm{Coj}}$

Finding the Optimal Solution
If $v_{6}+M[p[6]>M[5]$
Index
1 1

6
retina
$\{6\}+F O(P(6))$
else
$3 \quad レ \longmapsto v_{3}=4$
4
5
6


$$
v_{4}+\frac{M[P[3]]}{2}>M[2]
$$

| $M[0]$ | $M[1]$ | $M[2]$ | $M[3]$ | $M[4]$ | $M[5]$ | $M[6]$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 2 | 4 | 6 | 7 | 8 | 8 |

## How much space is used?

Index


| $\mathrm{M}[0]$ | $\mathrm{M}[1]$ | $\mathrm{M}[2]$ | $\mathrm{M}[3]$ | $\mathrm{M}[4]$ | $\mathrm{M}[5]$ | $\mathrm{M}[6]$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 2 | 4 | 6 | 7 | 8 | 8 |

## Now You Try

1 $\square$

$$
p(1)=0
$$

2

$$
v_{2}=1
$$

$$
p(2)=1
$$

3
$v_{3}=6$

$$
p(3)=0
$$

4
$v_{4}=5$

$$
p(4)=2
$$

5


$$
v_{6}=2 \quad p(6)=4
$$

| $M[0]$ | $M[1]$ | $M[2]$ | $M[3]$ | $M[4]$ | $M[5]$ | $M[6]$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

## Dynamic Programming Recap

- Express the optimal solution as a recurrence
- Identify a small number of subproblems
- Relate the optimal solution on subproblems
- Efficiently solve for the value of the optimum
- Simple implementation is exponential time, but topdown and bottom-up are linear time
- Top-Down: recursive, store solution to subproblems
- Bottom-Up: iterate through subproblems in order
- Find the solution using the table of values


## Dynamic Programming

a. Fibonacci Series
b. Weighted Interval Scheduling
c. Knapsack

## The Knapsack Problem

- Input: $n$ items for your knapsack
- value $v_{i}$ and a weight $w_{i} \in \mathbb{N}$ for $n$ items
- capacity of your knapsack $T \in \mathbb{N}$

- Output: the most valuable subset of items that fits in the knapsack

- Subset $S \subseteq\{1, \ldots, n\}$
- Value $V_{S}=\sum_{i \in S} v_{i}$ as large as possible
$n=5$
- Weight $W_{S}=\sum_{i \in S} w_{i}$ at most $T$

$$
\begin{array}{ll}
v_{1}=4 & w_{1}=12 \\
v_{2}=2 & w_{2}=1
\end{array}
$$

- Want: $\operatorname{argmax}_{S \subseteq\{1, \ldots, n\}} V_{S}$ s.t. $W_{S} \leq T$
- SubsetSum: $v_{i}=w_{i}$,
- TugOfWar: $v_{i}=w_{i}, T=\frac{1}{2} \sum_{i} v_{i}$

$$
\begin{array}{ll}
v_{3}=10 & w_{3}=4 \\
v_{4}=1 & w_{4}=1 \\
v_{5}=2 & w_{5}=2
\end{array}
$$

Do we really need DP?

Items with large $\frac{v_{i}}{w_{i}}$ seem like good choices...
Ex. $T=8,\left(v_{1}=6, w_{1}=5\right),\left(v_{2}=4, w_{2}=4\right),\left(v_{3}=\right.$ $4, w_{3}=4$ )

- Strategy 1: Repeatedly pick items that fit with largest $\frac{v_{i}}{w_{i}}$ we only pick item 1 and gain a value $f 6$
- Is this optimal?
apt is $\{2,3\}$ which gives value \&

