Dynamic Programming

a. Fibonacci Series
b. Weighted Interval Scheduling
c. Knapsack

The Knapsack Problem

- Input: n items for your knapsack
- value v_{i} and a weight $w_{i} \in \mathbb{N}$ for n items
- capacity of your knapsack $T \in \mathbb{N}$

- Output: the most valuable subset of items that fits in the knapsack
- Subset $S \subseteq\{1, \ldots, n\}$
- Value $V_{S}=\sum_{i \in S} v_{i}$ as large as possible
$n=\quad T=$
- Weight $W_{S}=\sum_{i \in S} w_{i}$ at most T

$$
\begin{array}{ll}
v_{1}= & w_{1}= \\
v_{2}= & w_{2}=
\end{array}
$$

- Want: $\operatorname{argmax}_{S \subseteq\{1, \ldots, n\}} V_{S}$ s.t. $W_{S} \leq T$
- (SubsetSum: $v_{i}=w_{i}$,
- TugOfWar: $\left.v_{i}=w_{i}, T=\frac{1}{2} \sum_{i} v_{i}\right)$

$$
\begin{array}{ll}
v_{3}= & w_{3}= \\
v_{4}= & w_{4}= \\
v_{5}= & w_{5}=
\end{array}
$$

Do we really need DP?

Items with large $\frac{v_{i}}{w_{i}}$ seem like good choices...
Ex. $T=8,\left(v_{1}=6, w_{1}=5\right),\left(v_{2}=4, w_{2}=4\right),\left(v_{3}=\right.$ $4, w_{3}=4$)

- Strategy 1: Repeatedly pick items that fit with largest $\frac{v_{i}}{w_{i}}$
- Is this optimal?

Knapsack - what to do with n-th item?

Want: $\operatorname{argmax}_{S \subseteq\{1, \ldots, n\}} V_{S}$ s.t. $W_{S} \leq T$

Knapsack - subproblems

- Let $O_{n} \subseteq\{1, \ldots, n\}$ be the optimal subset of items given the first n items
- Case 1: n $\notin O_{n}$

$$
O_{n}=
$$

- Case 2: $n \in O_{n}$

$$
O_{n}=
$$

Knapsack - recurrence

- Let $\mathbf{O P T}(\boldsymbol{j}, \boldsymbol{S})$ be the value of the optimal subset of items $\{1, \ldots, j\}$ in a knapsack of size S
- Case 1: $j \notin O_{j, S}$
- Case 2: $j \in O_{j, S}$

Knapsack - recurrence

- Let $\mathbf{O P T}(\boldsymbol{j}, \boldsymbol{S})$ be the value of the optimal subset of items $\{1, \ldots, j\}$ in a knapsack of size S
- Case 1: $j \notin O_{j, S}$
- $O P T(j, S)=O P T(j-1, S)$
- Case 2: $j \in O_{j, S}$
- $O P T(j, S)=v_{j}+O P T\left(j-1, S-w_{j}\right)$

Recurrence:
$\operatorname{OPT}(j, S)=$

Base Cases:
$\operatorname{OPT}(j, 0)=$
$\operatorname{OPT}(0, S)=$

Knapsack - recurrence

- Let $\mathbf{O P T}(\boldsymbol{j}, \boldsymbol{S})$ be the value of the optimal subset of items $\{1, \ldots, j\}$ in a knapsack of size S
- Case 1: $j \notin O_{j, S}$
- $O P T(j, S)=O P T(j-1, S)$
- Case 2: $j \in O_{j, S}$
- $\operatorname{OPT}(j, S)=v_{j}+O P T\left(j-1, S-w_{j}\right)$

Recurrence:
$\operatorname{OPT}(j, S)=\left\{\begin{array}{c}\max \left\{\operatorname{OPT}(j-1, S), v_{j}+\operatorname{OPT}\left(j-1, S-w_{j}\right)\right\} s \geq w_{j} \\ O P T(j-1, S) \\ S<w_{j}\end{array}\right.$
Base Cases:
$\operatorname{OPT}(j, 0)=\operatorname{OPT}(0, S)=0$

Knapsack ("Bottom-Up")

// All inputs are global vars
FindOPT (n, T) :

$$
\mathrm{M}[0, \mathrm{~S}] \leftarrow 0, \mathrm{M}[\mathrm{j}, 0] \leftarrow 0
$$

for ($j=1, \ldots, n$):
for ($\mathrm{S}=1, \ldots, \mathrm{~T}$):
if ($\mathrm{w}_{\mathrm{j}}>\mathrm{S}$): $\mathrm{M}[\mathrm{j}, \mathrm{S}] \leftarrow \mathrm{M}[\mathrm{j}-1, \mathrm{~S}]$
else: $M[j, S] \leftarrow \max \left\{M[j-1, S], v_{j}+M\left[j-1, S-w_{j}\right]\right\}$
return $M[n, T]$

Ask the Audience

Space:

- Input: $T=8, n=3$
- $w_{1}=2, v_{1}=4$
- $w_{2}=3, v_{2}=5$
- $w_{3}=5, v_{3}=8$

capacities
OPT(j,S)
$=\left\{\begin{array}{cc}\max \left\{O P T(j-1, S), v_{j}+O P T\left(j-1, S-w_{j}\right)\right\} & \text { If } S \geq w_{j} \\ O P T(j-1, S) & \text { If } S<w_{j}\end{array}\right.$

Filling the Knapsack

- Let $\boldsymbol{O}_{\boldsymbol{j}, \boldsymbol{S}}$ be the optimal subset of items $\{1, \ldots, j\}$ in a knapsack of size S
- Case 1: $j \notin O_{j, S}$
- Use opt. solution for items 1 to j-1 in a knapsack of size S
- Case 2: $j \in O_{j, S}$
- Use $j+$ opt. solution for items 1 to j-1 in a knapsack of size $S-w_{j}$

Filling the Knapsack

// All inputs are global vars
// M[O:n,O:T] contains solutions to subproblems FindSol (M, n, T) :
if ($\mathrm{n}=0$ or $\mathrm{T}=0$): return \varnothing else:
if ($\mathrm{w}_{\mathrm{n}}>\mathrm{T}$): return FindSol (M,n-1,T)
else:
if $\left(M[n-1, T]>V_{n}+M\left[n-1, T-w_{n}\right]\right)$: return FindSol ($M, n-1, T$)
else:
return $\{\mathrm{n}\}+$ FindSol $\left(\mathrm{M}, \mathrm{n}-1, \mathrm{~T}-\mathrm{w}_{\mathrm{n}}\right)$

Knapsack Wrapup

- Can solve knapsack problems in time/space $O(n T)$
- Recipe:
(1) identify a set of subproblems
(2) relate the subproblems via a recurrence
(3) find an efficient implementation of the recurrence (top down or bottom up)
(4) reconstruct the solution from the DP table

Dynamic Programming
a. Fibonacci Series
b. Weighted Interval Scheduling
c. Knapsack
d. Longest Common Subsequence

Common Subsequences

- Given a string $x \in \Sigma^{n}$ a subsequence is any string obtained by deleting a subset of the symbols

$$
r e c u r a r a d
$$

- Given two strings $x \in \Sigma^{n}, y \in \Sigma^{m}$, a common subsequence is a subsequence of both x and y

$$
\begin{aligned}
& r e c c u r a n d \\
& r e c c u r e r e d e
\end{aligned}
$$

Longest Common Subsequence (LCS)

- Input: Two strings $x \in \Sigma^{n}, y \in \Sigma^{m}$
- Output: The longest common subsequence of x and y

Writing the Recurrence

- Consider the LCS of x, y
- Question: Are the last symbols of x and y in the subsequence?
- Observation: Suppose $x_{n}=y_{m}$
- Then these symbols are always part of some LCS
- Ask the Audience: Why?

Writing the Recurrence

- Consider the LCS of x, y
- Question: Are the last symbols of x and y in the subsequence?
- Observation: Suppose $x_{n} \neq y_{m}$
- Case 1: x_{n} is not in the LCS
- Case 2: y_{m} is not in the LCS
- Case 3: Neither is in the LCS

Writing the Recurrence

- $\operatorname{LCS}(i, j)=$ Length of LCS of $x_{1: i}$ and $y_{1: j}$
- Equal: If $x_{i}=y_{j}$ then
- Not Equal:
- Case 1: x_{i} is not in the LCS
- Case 2: y_{j} is not in the LCS

Recurrence:

Base Cases:

Writing the Recurrence

Recurrence:

$$
\operatorname{LCS}(i, j)=\left\{\begin{array}{cl}
1+\operatorname{LCS}(i-1, j-1) & \text { if } x_{i}=y_{j} \\
\max \{\operatorname{LCS}(i-1, j), \operatorname{LCS}(i, j-1)\} & \text { if } x_{i} \neq y_{j}
\end{array}\right.
$$

Base Cases:

$\operatorname{LCS}(i, 0)=0, \operatorname{LCS}(0, j)=0$

Solving the Recurrence: Bottom-Up

// All inputs are global vars FindOPT (n, m) :
$\mathrm{M}[\mathrm{i}, 0] \leftarrow 0, \quad \mathrm{M}[0, j] \leftarrow 0$
for ($i=1, \ldots, n$):
for ($\mathrm{j}=1, \ldots, \mathrm{~m}$):
if $\left(x_{i}=y_{j}\right)$:
$M[i, j] \leftarrow 1+M[i-1, j-1]$
else:

$$
M[i, j] \leftarrow \max \{M[i-1, j], M[i, j-1]\}
$$

return $M[n, m]$

Ask the Audience

$$
\begin{aligned}
& x=\text { peat } \\
& y=\text { leapt }
\end{aligned}
$$

Compute LCS (i, j) for each subproblem

		$j=0$	1	2	2	4	5
		-	1	e	a	P	t
$i=0$	-	0	0	0	0	0	0
1	p	0					
2	e	0					
3	a	0					
4	t	0					

Ask the Audience

$$
\begin{aligned}
& x=\text { peat } \\
& y=\text { leapt }
\end{aligned}
$$

Compute LCS (i, j) for each subproblem

| | | $j=0$ | 1 | 2 | 2 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | - | 1 | e | a | p | t |
| $i=0$ | - | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{0}$ |
| 1 | ρ | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{1}$ |
| 2 | Θ | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{1}$ |
| $\mathbf{3}$ | a | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{2}$ | $\mathbf{2}$ |
| $\mathbf{4}$ | t | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{2}$ | $\mathbf{3}$ |

Finding the Solution

// All inputs are global vars FindLCS (i,j):
if (i = O or $j=0$)
return ""
if $\left(x_{i}=y_{j}\right)$:
return FindLCS (i-1,j-1)+ \mathbf{x}_{i}
else:
if (M[i-1,j] > M[i,j-1]) return FindLCS (i-1,j)
else:
return FindLCS (i,j-1)
return M[n,m]

Summary

- Compute the longest common subsequence between two strings of length n and m in time $O(\mathrm{~nm})$
- Dynamic Programming:
- Question: Which of the final letters are part of the LCS?
- Ask the Audience: How do we recover the LCS itself from the values $\operatorname{LCS}(\mathrm{i}, \mathrm{j})$

