Dynamic Programming
a. Fibonacci Series
b. Weighted Interval Scheduling
c. Knapsack
d. Longest Common Subsequence

Common Subsequences

- Given a string $x \in \Sigma^{n}$ a subsequence is any string obtained by deleting a subset of the symbols

$$
r e c u r a r a d
$$

- Given two strings $x \in \Sigma^{n}, y \in \Sigma^{m}$, a common subsequence is a subsequence of both x and y

$$
\begin{aligned}
& r e c c u r a n d \\
& r e c c u r e r e d e
\end{aligned}
$$

Longest Common Subsequence (LCS)

- Input: Two strings $x \in \Sigma^{n}, y \in \Sigma^{m}$
- Output: The longest common subsequence of x and y

Writing the Recurrence

Recurrence:

$$
\operatorname{LCS}(i, j)=\left\{\begin{array}{cl}
1+\operatorname{LCS}(i-1, j-1) & \text { if } x_{i}=y_{j} \\
\max \{\operatorname{LCS}(i-1, j), \operatorname{LCS}(i, j-1)\} & \text { if } x_{i} \neq y_{j}
\end{array}\right.
$$

Base Cases:

$\operatorname{LCS}(i, 0)=0, \operatorname{LCS}(0, j)=0$

Solving the Recurrence: Bottom-Up

// All inputs are global vars FindOPT (n, m) :
$\mathrm{M}[\mathrm{i}, 0] \leftarrow 0, \quad \mathrm{M}[0, j] \leftarrow 0$
for ($i=1, \ldots, n$):
for ($\mathrm{j}=1, \ldots, \mathrm{~m}$):
if $\left(x_{i}=y_{j}\right)$:
$M[i, j] \leftarrow 1+M[i-1, j-1]$
else:

$$
M[i, j] \leftarrow \max \{M[i-1, j], M[i, j-1]\}
$$

return $M[n, m]$

Ask the Audience

$$
\begin{aligned}
& x=\text { peat } \\
& y=\text { leapt }
\end{aligned}
$$

Compute LCS (i, j) for each subproblem

		$j=0$	1	2	2	4	5
		-	1	e	a	P	t
$i=0$	-	0	0	0	0	0	0
1	p	0					
2	e	0					
3	a	0					
4	t	0					

Ask the Audience

$$
\begin{aligned}
& x=\text { peat } \\
& y=\text { leapt }
\end{aligned}
$$

Compute LCS (i, j) for each subproblem

| | | $j=0$ | 1 | 2 | 2 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | - | 1 | e | a | p | t |
| $i=0$ | - | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{0}$ |
| 1 | ρ | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{1}$ |
| 2 | Θ | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{1}$ |
| $\mathbf{3}$ | a | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{2}$ | $\mathbf{2}$ |
| $\mathbf{4}$ | t | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{2}$ | $\mathbf{3}$ |

Finding the Solution

// All inputs are global vars FindLCS (i,j):
if (i = O or $j=0$)
return ""
if $\left(x_{i}=y_{j}\right)$:
return FindLCS (i-1,j-1)+ \mathbf{x}_{i}
else:
if (M[i-1,j] > M[i,j-1]) return FindLCS (i-1,j)
else:
return FindLCS (i,j-1)
return M[n,m]

Dynamic Programming
a. Fibonacci Series
b. Weighted Interval Scheduling
c. Knapsack
d. Longest Common Subsequence
e. Longest Increasing Subsequence

Longest Increasing Subsequence (LIS)

- Input: a sequence of numbers x_{1}, \ldots, x_{n}
sequence

$\begin{array}{lllllllllllll}4 & 0 & 8 & 2 & 9 & 3 & 1 & 2 & 3 & 7 & 4 & 6 & 3\end{array}$

Longest Increasing Subsequence (LIS)

- Input: a sequence of numbers x_{1}, \ldots, x_{n}
sequence

$\begin{array}{lllllllllllll}4 & 0 & 8 & 2 & 9 & 3 & 1 & 2 & 3 & 7 & 4 & 6 & 3\end{array}$

increasing subsequence

- Increasing Subsequence: indices $1 \leq i_{1} \leq i_{2} \leq \cdots \leq i_{k} \leq n$ such that $x_{i_{1}}<x_{i_{2}}<\cdots<x_{i_{k}}$

Longest Increasing Subsequence (LIS)

- Input: a sequence of numbers x_{1}, \ldots, x_{n}
sequence

$$
\begin{array}{lllllllllllll}
4 & 0 & 8 & 2 & 9 & 3 & 1 & 2 & 3 & 7 & 4 & 6 & 3
\end{array}
$$

increasing subsequence

- Output: a longest increasing subsequence
sequence

$$
\begin{array}{lllllllllllll}
4 & 0 & 8 & 2 & 9 & 3 & 1 & 2 & 3 & 7 & 4 & 6 & 3
\end{array}
$$

longest increasing subsequence

Ask the Audience

- Find a longest increasing subsequence of

14	7	5	6	2	12

Identifying the Subproblems

- Start by finding the value of the optimal solution:
- In this problem: length of the LIS

Identifying the Subproblems

- Start by finding the value of the optimal solution:
- In this problem: length of the LIS
- What about defining $\operatorname{LIS}(j)$ to be the length of the longest increasing subsequence between the first j elements?

8	9	12	3	6	10

Writing the Recurrence

- Let LIS (j) be the length of the longest increasing subsequence that ends with x_{j}

8	9	12	3	6	10

Writing the Recurrence

- Let LIS (j) be the length of the longest increasing subsequence that ends with x_{j}
- Case i : the previous element is x_{i}

$$
\begin{array}{l|l|l|l|l|l}
6 & 7 & 14 & 5 & 12 & 8
\end{array}
$$

Writing the Recurrence

- Let LIS (j) be the length of the longest increasing subsequence that ends with x_{j}
- Case i : the previous element is x_{i}
- Some cases are invalid

| 6 | 7 | 14 | 5 | 12 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Writing the Recurrence

- Let LIS (j) be the length of the longest increasing subsequence that ends with x_{j}
- Case i : the last two numbers are x_{i} and x_{j}

Recurrence:
$\operatorname{LIS}(j)=1+\max _{1 \leq i<j \text { and } x_{i}<x_{j}} \operatorname{LIS}(i)$
Base Case:
$\operatorname{LIS}(1)=1$

Ask the Audience

- Fill out the values $\operatorname{LIS}(j)$ for $j=1, \ldots, 6$

6	10	5	14	8	7

j	1	2	3	4	5	6
$\operatorname{LIS}(\mathrm{j})$	1					

Ask the Audience

Is LIS (n) the length of the optimal solution?

Solving the Recurrence: Bottom-Up

// All inputs are global vars FindOPT (n) :
$\mathrm{M}[1] \leftarrow 1$
for ($\mathrm{j}=2, \ldots, \mathrm{n}$):
$M[j]=1+\max _{1 \leq i<j \text { and } x_{i}<x_{j}} M[i]$
return $\max _{1 \leq j \leq n} \mathrm{M}[\mathrm{j}]$

Solving the Recurrence: Bottom-Up

```
FindOPT(n):
    \(\mathrm{M}[1] \leftarrow 1\)
    for ( \(\mathrm{j}=2, \ldots, \mathrm{n}\) ):
    \(M[j]=1+\max _{1 \leq i<j \text { and } x_{i}<x_{j}} M[i]\)
    return \(\max _{1 \leq j \leq n} \mathrm{M}[\mathrm{j}]\)
```

Running time:

Recovering the LIS

- Fill out the values $\operatorname{LIS}(j)$ for $j=1, \ldots, 6$

| 6 | 10 | 5 | 14 | 8 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

j	1	2	3	4	5	6
$\operatorname{LIS}(\mathrm{j})$	1	2	1	3	2	2

Recovering the LIS

```
FindLIS(n):
    if ( }n=1\mathrm{ )
        return x 
    j= argmax M[i]
        1\leqi<n and }\mp@subsup{x}{i}{}<\mp@subsup{x}{n}{
    return FindLIS(j) + {xn}
```


Summary

- Can compute a LIS in time $O\left(n^{2}\right)$
- Same algorithm works for longest non-decreasing, longest decreasing, longest non-increasing, and more
- Dynamic Programming:
- Question: What is the final symbol in the LIS?
- Subproblems represent LIS with a specific final symbol
- The actual optimal value is not always in LIS(n)

