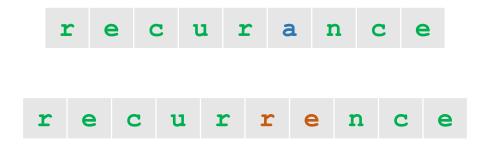
Dynamic Programming

- a. Fibonacci Series
- b. Weighted Interval Scheduling
- c. Knapsack
- d. Longest Common Subsequence

Common Subsequences

• Given a string $x \in \Sigma^n$ a **subsequence** is any string obtained by deleting a subset of the symbols

• Given two strings $x \in \Sigma^n$, $y \in \Sigma^m$, a **common subsequence** is a **subsequence** of both x and y



Longest Common Subsequence (LCS)

- Input: Two strings $x \in \Sigma^n$, $y \in \Sigma^m$
- Output: The longest common subsequence of x and y

Recurrence:

$$LCS(i,j) = \begin{cases} 1 + LCS(i-1,j-1) & \text{if } x_i = y_j \\ \max\{LCS(i-1,j), LCS(i,j-1)\} & \text{if } x_i \neq y_j \end{cases}$$

Base Cases:

LCS(i, 0) = 0, LCS(0, j) = 0

Solving the Recurrence: Bottom-Up

```
// All inputs are global vars
FindOPT(n,m):
  M[i,0] \leftarrow 0, \quad M[0,j] \leftarrow 0
  for (i = 1, ..., n):
    for (j = 1, ..., m):
       if (x_i = y_i):
         M[i,j] \leftarrow 1 + M[i-1,j-1]
       else:
         M[i,j] \leftarrow \max{M[i-1,j], M[i,j-1]}
  return M[n,m]
```

Ask the Audience

x = peatCompute LCS(i,j) fory = leapteach subproblem

		j = 0	1	2	2	4	5
		-	1	e	a	P	t
i = 0	-	0	0	0	0	0	0
1	р	0					
2	е	0					
3	a	0					
4	t	0					

Ask the Audience

x = peatCompute LCS(i,j) fory = leapteach subproblem

		j = 0	1	2	2	4	5
		-	1	е	a	P	t
i = 0	-	0	0	0	0	0	0
1	P	0	0	0	0	1	1
2	е	0	0	1	1	1	1
3	a	0	0	1	2	2	2
4	t	0	0	1	2	2	3

Finding the Solution

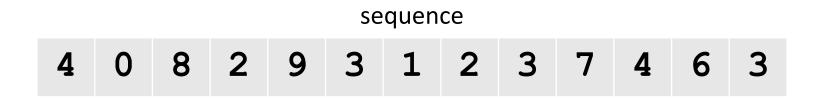
```
// All inputs are global vars
FindLCS(i,j):
  if (i = 0 \text{ or } j = 0)
    return ""
  if (x_i = y_i):
    return FindLCS(i-1, j-1) + x_i
 else:
    if (M[i-1,j] > M[i,j-1])
      return FindLCS(i-1,j)
    else:
      return FindLCS(i,j-1)
  return M[n,m]
```

Dynamic Programming

- a. Fibonacci Series
- b. Weighted Interval Scheduling
- c. Knapsack
- d. Longest Common Subsequence
- e. Longest Increasing Subsequence

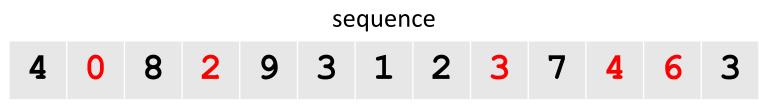
Longest Increasing Subsequence (LIS)

• Input: a sequence of numbers $x_1, ..., x_n$



Longest Increasing Subsequence (LIS)

• Input: a sequence of numbers $x_1, ..., x_n$



increasing subsequence

• Increasing Subsequence: indices $1 \le i_1 \le i_2 \le \dots \le i_k \le n$ such that $x_{i_1} < x_{i_2} < \dots < x_{i_k}$

Longest Increasing Subsequence (LIS)

• Input: a sequence of numbers $x_1, ..., x_n$



increasing subsequence

• Output: a longest increasing subsequence

sequence

longest increasing subsequence

Ask the Audience

• Find a longest increasing subsequence of

Identifying the Subproblems

- Start by finding the <u>value</u> of the optimal solution:
 - In this problem: length of the LIS

Identifying the Subproblems

- Start by finding the <u>value</u> of the optimal solution:
 - In this problem: length of the LIS
- What about defining LIS(*j*) to be the length of the longest increasing subsequence between the first *j* elements?

• Let LIS(*j*) be the length of the longest increasing subsequence **that ends with** *x*_{*j*}

- Let LIS(*j*) be the length of the longest increasing subsequence **that ends with** *x*_{*j*}
- Case *i*: the previous element is x_i

6	7	14	5	12	8

- Let LIS(*j*) be the length of the longest increasing subsequence **that ends with** *x*_{*i*}
- Case *i*: the previous element is x_i
 - Some cases are invalid

- Let LIS(*j*) be the length of the longest increasing subsequence **that ends with** *x*_{*i*}
- Case *i*: the last two numbers are x_i and x_j

Recurrence:

$$LIS(j) = 1 + \max_{1 \le i < j \text{ and } x_i < x_j} LIS(i)$$

Base Case:

LIS(1) = 1

Ask the Audience

• Fill out the values LIS(j) for j = 1, ..., 6

j	1	2	3	4	5	6
LIS(j)	1					

Ask the Audience

Is LIS(n) the length of the optimal solution?

Solving the Recurrence: Bottom-Up

```
// All inputs are global vars
FindOPT(n):
    M[1] \leftarrow 1
for (j = 2, ..., n):
    M[j] = 1 + max M[i]
    return max M[j]
```

Solving the Recurrence: Bottom-Up

```
FindOPT(n):

M[1] \leftarrow 1

for (j = 2,...,n):

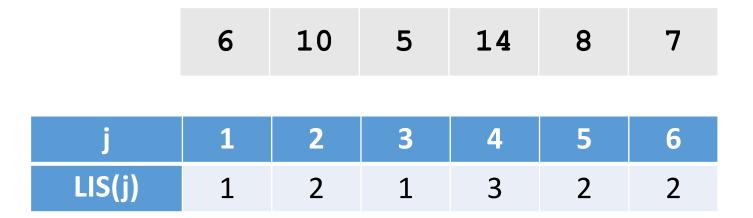
M[j] = 1 + \max_{1 \le i < j \text{ and } x_i < x_j} M[i]

return \max_{1 \le j \le n} M[j]
```

Running time:

Recovering the LIS

• Fill out the values LIS(j) for j = 1, ..., 6



Recovering the LIS

```
FindLIS(n):

if (n=1)

return x_1

j= argmax M[i]

1 \le i < n \text{ and } x_i < x_n

return FindLIS(j) + {x_n}
```

Summary

- Can compute a LIS in time $O(n^2)$
 - Same algorithm works for longest non-decreasing, longest decreasing, longest non-increasing, and more
- Dynamic Programming:
 - Question: What is the final symbol in the LIS?
 - Subproblems represent LIS with a specific final symbol
 - The actual optimal value is not always in LIS(n)