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Linear Programming

• Optimize a linear function subject to linear inequalities.

• Generalizes shortest paths, max flow, assignment problems, 
matching, multicommodity flow, MST, …

• LPs are used extensively in:
• Designing poly-time algorithms.

• Designing/analyzing approximation algorithms.

A sweet-spot between generality and solvability



Brewery Problem

• Small brewery produces ale and beer.

• Production limited by scarce resources: corn, hops, barley malt.

• Recipes for ale and beer require different proportions of resources.

• How can brewer maximize profits?

• Devote all resources to ale: 34 barrels of ale   => $442

• Devote all resources to beer: 32 barrels of beer => $736

• 7.5 barrels of ale, 29.5 barrels of beer  => $776

• 12 barrels of ale, 28 barrels of beer  => 800



Brewery Problem



Standard Form

• “Standard form” of an LP.

• Input: real numbers 𝑎𝑖𝑗, 𝑐𝑗 , 𝑏𝑖.

• Output: real numbers 𝑥𝑗.

• 𝑛 = # of decision variables, 𝑚 = # of constraints.

• Maximize linear objective function subject to linear constraints.

• Linear: No 𝑥2, 𝑥𝑦, arccos 𝑥 , etc.

• Programming: planning (predates computer programming).



Brewery: Converting to Standard Form

• How do we convert the brewery LP to standard form?

• Add a slack variable for each inequality.

• Now a 5-dimensional problem.

Brewery LP
LP Standard form



Converting to Standard Form

• It’s easy to convert an LP to standard form.

• ≤ to =: 𝑥 + 2𝑦 − 3𝑧 ≤ 17 ⇒ 𝑥 + 2𝑦 − 3𝑧 + 𝑠 = 17, 𝑠 ≥ 0 

• ≥ to =: 𝑥 + 2𝑦 − 3𝑧 ≥ 17 ⇒ 𝑥 + 2𝑦 − 3𝑧 − 𝑠 = 17, 𝑠 ≥ 0 

• Min to max: min 𝑥 + 2𝑦 − 3𝑧 ⇒ max −𝑥 − 2𝑦 + 3𝑧

• Unrestricted to nonnegative: 
𝑥 unrestricted ⇒ 𝑥 = 𝑥+ − 𝑥−, 𝑥+ ≥ 0, 𝑥− ≥ 0

LP Standard form



Geometry of LPs: Back to Brewery 



Geometry of LPs: Back to Brewery 



Geometry of LPs: Back to Brewery 

• Brewery problem observation: Regardless of objective function 
coefficients, an optimal solution occurs at a vertex.



Convexity

• Convex set: If two points 𝑥 and 𝑦 are in the set, then so is 
𝜆𝑥 + 1 − 𝜆 𝑦 for any 0 ≤ 𝜆 ≤ 1.

• Vertex: A point 𝑥 in the set that can’t be written as a strict convex 
combination of two distinct points in the set.

• Observation: The feasible region of an LP is a convex set.



A vertex is optimal

• Theorem: If there is an optimal solution to (P) then there is one that 
is a vertex.

• Intuition: Start from an optimal solution, move in a direction that 
does not decrease the objective value (one such direction must exist) 
until you reach a boundary. Repeat.



Examples: One Shortest Path

• Input: Weighted directed graph G=(V, E), weight function ℓ: 𝐸 →
𝑅 and two vertices 𝑠, 𝑡 ∈ 𝑉. 

• Output: Length of the shortest path from 𝑠 to 𝑡.



Examples: One Shortest Path

• Input: Weighted directed graph G=(V, E), weight function ℓ: 𝐸 →
𝑅 and two vertices 𝑠, 𝑡 ∈ 𝑉. 

• Output: Length of the shortest path from 𝑠 to 𝑡.

• This LP is feasible iff the graph has no negative cycles.

• The shortest path distances form a feasible solution to the LP.

• Counterintuitively, this maximization LP solves a minimization 
problem.

• Is the LP solution unique?



Examples: One Shortest Path, Take two

• Input: Weighted directed graph G=(V, E), weight function ℓ: 𝐸 → 𝑅 and two 
vertices 𝑠, 𝑡 ∈ 𝑉. 

• Output: Length of the shortest path from 𝑠 to 𝑡.

• Instead of variables on the vertices, this LP variables 𝑥(𝑢 → 𝑣) that 
intuitively indicate which edges belong to the shortest path from 𝑠 to 𝑡.

• This LP has an integral solution. This is a special property of this specific LP. 
Generally, LPs with integer coefficients don’t necessarily have integral 
solutions.



Examples: Single Source Shortest Path

• Input: Weighted directed graph G=(V, E), weight function ℓ: 𝐸 →
𝑅 and vertex 𝑠 ∈ 𝑉. 

• Output: Length of the shortest path from 𝑠 to every other vertex.



Examples: Single Source Shortest Path

• Input: Weighted directed graph G=(V, E), weight function ℓ: 𝐸 →
𝑅 and vertex 𝑠 ∈ 𝑉. 

• Output: Length of the shortest path from 𝑠 to every other vertex.

• The problem with our previous maximization LP for one shortest 
path is that it maximizes 𝑑𝑖𝑠𝑡(𝑡) and so the distance to vertices not 
on the path from 𝑠 to 𝑡 could be incorrect. 

• The following modification to the LP makes sure that all distances are 
right:

• Again, we are using maximization to solve a minimization problem!



Examples: Single Source Shortest Path

• Input: Weighted directed graph G=(V, E), weight function ℓ: 𝐸 →
𝑅 and vertex 𝑠 ∈ 𝑉. 

• Output: Length of the shortest path from 𝑠 to every other vertex.

• We can also modify the second LP to find a shortest path tree



Examples: Max Flow

• Input: Weighted directed graph G=(V, E), non-negative capacity 
function 𝑐: 𝐸 → 𝑅≥0 and special vertices 𝑠, 𝑡 ∈ 𝑉. 

• Output: Value of maximum flow from s to v.



Examples: Max Flow

• Input: Weighted directed graph G=(V, E), non-negative capacity 
function 𝑐: 𝐸 → 𝑅≥0 and special vertices 𝑠, 𝑡 ∈ 𝑉. 

• Output: Value of maximum flow from s to v.



Examples: Min Cut

• Input: Weighted directed graph G=(V, E), non-negative capacity 
function 𝑐: 𝐸 → 𝑅≥0 and special vertices 𝑠, 𝑡 ∈ 𝑉. 

• Output: Value of the s, t cut with minimum capacity.



Examples: Min Cut

• Input: Weighted directed graph G=(V, E), non-negative capacity 
function 𝑐: 𝐸 → 𝑅≥0 and special vertices 𝑠, 𝑡 ∈ 𝑉. 

• Output: Value of the (s, t)-cut with minimum capacity.



Examples: Maximum Bipartite Matching

• Input: Unweighted undirected bipartite graph G=(V, E)

• Output: Size of maximum matching in G.



Examples: Maximum Non-Bipartite Matching

• Input: Unweighted undirected general graph G=(V, E)

• Output: Size of maximum matching in G.
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