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Linear Programming

e Optimize a linear function subject to linear inequalities.
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* Generalizes shortest paths, max flow, assighment problems,
matching, multicommodity flow, MST, ...

* LPs are used extensively in:
* Designing poly-time algorithms.
* Designing/analyzing approximation algorithms.

A sweet-spot between generality and solvability



Brewery Problem

* Small brewery produces ale and beer.
* Production limited by scarce resources: corn, hops, barley malt.

* Recipes for ale and beer require different proportions of resources.

Corn Hops WEL Profit

Ale (barrel)
Beer (barrel) 15 4 20 23
constraint 480 160 1190

* How can brewer maximize profits?

 Devote all resources to ale: 34 barrels of ale => S442
* Devote all resources to beer: 32 barrels of beer =>5736
* 7.5 barrels of ale, 29.5 barrels of beer =>S776

* 12 barrels of ale, 28 barrels of beer => 800



Brewery Problem

objective function

Ale Beer

s.t. 5A + 15B =< 480  Corn
Hops
35A + 20B = 1190 Malt

A, B= 0

constraint

decision variable

Corn Hops Malt Proflt

Ale (barrel)

Beer (barrel) 15 4

20 23 \ /

PROOUCT MIX
constraint 480 160 1190



Standard Form

e “Standard form” of an LP.
* Input: real numbers a;;, ¢;, b;.
* Output: real numbers x;.
* n = # of decision variables, m = # of constraints.
* Maximize linear objective function subject to linear constraints.
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e Linear: No x2, xy, arccos(x), etc.

* Programming: planning (predates computer programming).



Brewery: Converting to Standard Form

LP Standard form

Brewery LP

* How do we convert the brewery LP to standard form?
* Add a slack variable for each inequality.
* Now a 5-dimensional problem.




Converting to Standard Form

* It's easy to convert an LP to standard form. (P) max c’x
s.t. Ax = b
x = 0

LP Standard form

<to=x+4+2y—3z<17=>x+2y—-—3z2+s5s=17,s =20
>to=1x+2y—3z=217=>x+2y—3z2—5=17,s =20

Min to max: minx + 2y — 3z > max—x — 2y + 3z

Unrestricted to nonnegative:
x unrestricted=>x=xt"—x",xT>0,x" >0



Geometry of LPs: Back to Brewery




Geometry of LPs: Back to Brewery
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Geometry of LPs: Back to Brewery

* Brewery problem observation: Regardless of objective function
coefficients, an optimal solution occurs at a vertex.
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Convexity

* Convex set: If two points x and y are in the set, then so is
Ax+ (1 —A)yforany0 <A< 1.

* Vertex: A point x in the set that can’t be written as a strict convex
combination of two distinct points in the set.

vertex

~N

convex not convex

* Observation: The feasible region of an LP is a convex set.



A vertex is optimal

* Theorem: If there is an optimal solution to (P) then there is one that
IS a vertex.

(P) max c¢'x
s.t. Ax = b

x = 0

* Intuition: Start from an optimal solution, move in a direction that
does not decrease the objective value (one such direction must exist)
until you reach a boundary. Repeat.




Examples: One Shortest Path

* Input: Weighted directed graph G=(V, E), weight function £: EF —
R and two vertices s,t € V.

* Output: Length of the shortest path from s to t.



Examples: One Shortest Path

* Input: Weighted directed graph G=(V, E), weight function £: EF —
R and two vertices s,t € V.

* Output: Length of the shortest path from s to t.

maximize dist(t)
subject to dist(s) =0
dist(v) —dist(u) < £(u—v) for every edge u—v

e This LP is feasible iff the graph has no negative cycles.
* The shortest path distances form a feasible solution to the LP.

* Counterintuitively, this maximization LP solves a minimization
problem.

* |s the LP solution unique?



Examples: One Shortest Path, Take two

* |Input: Weighted directed graph G=(V, E), weight function £: E = R and two
vertices s,t € V.

* Qutput: Length of the shortest path from s to t.

minimize Z L(u-v) - x(u-v)

u—v

subject to Z x(u—t)— Z x(t-w)=1

Z x(u-v)— Z x(v-w)=0 for every vertex v #s,t
u w
x(u—»v) >0 for every edge u—v

* Instead of variables on the vertices, this LP variables x(u — v) that
intuitively indicate which edges belong to the shortest path from s to t.

* This LP has an integral solution. This is a special property of this specific LP.
Generally, LPs with integer coefficients don’t necessarily have integral
solutions.



Examples: Single Source Shortest Path

* Input: Weighted directed graph G=(V, E), weight function £: EF —
R and vertexs € V.

* Qutput: Length of the shortest path from s to every other vertex.



Examples: Single Source Shortest Path

* Input: Weighted directed graph G=(V, E), weight function £: EF —
R and vertexs € V.

* Qutput: Length of the shortest path from s to every other vertex.

* The problem with our previous maximization LP for one shortest
path is that it maximizes dist(t) and so the distance to vertices not
on the path from s to t could be incorrect.

* The following modification to the LP makes sure that all distances are
right:
maximize Z dist(v)

subject to dist(s) =0
dist(v) — dist(u) < £(u—v) for every edge u—v

e Again, we are using maximization to solve a minimization problem!



Examples: Single Source Shortest Path

* Input: Weighted directed graph G=(V, E), weight function £: EF —
R and vertexs € V.

* Qutput: Length of the shortest path from s to every other vertex.

* We can also modify the second LP to find a shortest path tree

minimize Z L(u—-v) - x(u—-v)
u—v

subject to x(u—>v) - X(V—>W) =1 for every vertex v 75 S
]
u w

x(u—»v) =0 for every edge u—v



Examples: Max Flow

* Input: Weighted directed graph G=(V, E), non-negative capacity
function c: E —» R*° and special vertices s,t € V.

* OQutput: Value of maximum flow from s to v.



Examples: Max Flow

* Input: Weighted directed graph G=(V, E), non-negative capacity
function c: E —» R*° and special vertices s,t € V.

* OQutput: Value of maximum flow from s to v.

maximize Z f(s—»w)— Z f (u—s)

subject to Zf(v—w) — Zf(u—w) =0 for every vertex v #s,t
w u

f(u-v) <c(u-v) foreveryedge u—v

fu-v)=0 for every edge u—v



Examples: Min Cut

* Input: Weighted directed graph G=(V, E), non-negative capacity
function c: E —» R*° and special vertices s,t € V.

* Qutput: Value of the s, t cut with minimum capacity.



Examples: Min Cut

* Input: Weighted directed graph G=(V, E), non-negative capacity
function c: E —» R*° and special vertices s,t € V.

* Qutput: Value of the (s, t)-cut with minimum capacity.

minimize Z c(u-v)-x(u-v)

u—v

subjectto x(u—v)+S(v)—S(u)>0 for every edge u—v
x(u—v) >0 for every edge u—v

S(s)=1

S(t)=0



Examples: Maximum Bipartite Matching

* Input: Unweighted undirected bipartite graph G=(V, E)

* Qutput: Size of maximum matchingin G.



Examples: Maximum Non-Bipartite Matching

* Input: Unweighted undirected general graph G=(V, E)

* Qutput: Size of maximum matchingin G.
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