
An Intuitive Proof of MWU

April 10, 2023

� Recall the setting.

� There are n experts and T days.

� At each day t = 1, 2, . . . , T , the following happen in order :

1. We choose a distribution pt = (pt1, . . . , p
t
n) of experts

2. Then, the adversary reveals the loss vector ℓt = (ℓt1, . . . , ℓ
t
n)

3. Our (expected) loss is ℓtA =
〈
pt, ℓt

〉
=
∑

i p
t
iℓ

t
i.

� Goal: our total loss LA =
∑T

t=1 ℓ
t
A is as good as the total loss of the best expert L⋆ =

mini
∑T

t=1 ℓ
t
i.

� We want to analyze the MWU algorithm:

Algorithm 1 The Multiplicative Weights Update (MWU) algorithm

MWU(ϵ):

� w1
i ← 1 ∀i

� For t = 1, . . . , T

� Follows expert i with probability pti =
wt

i∑
j w

t
j

� After ℓt is revealed, wt+1
i ← wt

i · exp(−ϵℓti) ∀i

Theorem 0.1. For 0 < ϵ ≤ 1/2, MWU(ϵ) guarantees that

LA ≤ L⋆ + ϵT +
lnn

ϵ
.

Theorem 0.2. Suppose ℓt ∈ [0, 1]n for all t. For 0 < ϵ ≤ 1/2, MWU(ϵ) guarantees that

LA ≤ L⋆ + ϵLA +
lnn

ϵ

so

LA ≤ (1 + 2ϵ)(L⋆ +
lnn

ϵ
)

� Most proofs in the literature1 involved a lot of low-level calculation and the intuition is lost.

1https://lucatrevisan.github.io/40391/lecture11.pdf
http://www.theoryofcomputing.org/articles/v008a006/v008a006.pdf

1

� The proof here:

� All low-level calculation is modularized into the soft-min function.

� Using soft-min, high-level explanation is very intuitive

� The proof is inspired by the paper of Quanrud2 and the blog of Zuzic3 (they work in a more

speci�c context of solving LPs).

1 Basic Calculus: Approximating Smooth Functions

� Let f : R→ R be a smooth function.

� Suppose you know f(x). Can we approximate f(x+ δ)? Use Taylor expansion

f(x+ δ) = f(x) + f ′(x)δ +
1

2
f ′′(x)δ2 + ...

and, when δ is tiny, we have

f(x+ δ) ≈ f(x) + f ′(x)δ

� What if f : Rn → R?

� The �rst derivative f ′(·) ∈ Rn is called the gradient of f .

� The second derivative f ′′(·) ∈ Rn×n is called the Hessian of f .

� Suppose you know f(x⃗). Can we approximate f(x⃗+ δ⃗)? Taylor expansion:

f(x⃗+ δ⃗) = f(x⃗) +
〈
f ′(x⃗), δ⃗

〉
+

1

2

〈
δ⃗, f ′′(x⃗)δ⃗

〉
+ ...

and, when ∥δ⃗∥ is tiny, we have

f(x⃗+ δ) ≈ f(x⃗) +
〈
f ′(x⃗), δ⃗

〉
2 Overall Plan

� Let's forget the MWU algorithm you saw.

� Suppose that we want to derive a very natural algorithm such that LA ≤ L⋆ + ϵT + lnn
ϵ .

� The algorithm we derived will be MWU exactly.

� Notation:

� Lt =
∑t

t′=1 ℓ
t′ ∈ Rn encode total loss of all experts after day t (after ℓt is revealed).

� Lt
⋆ = min(Lt) := mini(L

t
i) be the total loss of the best expert after day t.

� Lt
A =

∑t
t′=1

〈
pt

′
, ℓt

′
〉
is our total loss after day t.

� Wishful hope: whenever Lt
A increases, Lt

⋆ increases by at least the same amount.

2https://epubs.siam.org/doi/abs/10.1137/1.9781611976014.11
3https://zuza.github.io/Intuitive-Multiplicative-Weights/

2

� So after T days, we have LT
A ≤ LT

⋆ .

� No regret at all. But this is clearly too good to hope for.

� Suppose, magically, there exists a function smin(Lt) where

� smin(Lt) ≈ min(Lt) = Lt
⋆,

� but smin(Lt) is smooth.

� Actual plan: whenever Lt
A increases, smin(Lt) increases by at least the same amount (modulo

some small error).

� For each day,

� The change in smin(Lt) (which is a proxy for Lt
⋆) is

≈
〈
smin′(Lt−1), ℓt

〉
because smin(·) is smooth.

� By Taylor, we have

smin(Lt) = smin(Lt−1 + ℓt) ≈ smin(Lt−1) +
〈
smin′(Lt−1), ℓt

〉
,

* The approximation holds when ℓt is tiny compared to Lt−1.

* We will not assume this assumption in formal proof (but there will be small error

term).

� the change in Lt
A is exactly

〈
pt, ℓt

〉
by de�nition:

Lt
A = Lt−1

A +
〈
pt, ℓt

〉
� So... how should we set our distribution pt on each day t? Clearly, we should set

pt ← smin′(Lt−1)

so that
〈
smin′(Lt−1), ℓt

〉
=
〈
pt, ℓt

〉
.

� So every time Lt
A increases, smin(Lt) increases by almost the same amount. As Lt

⋆ ≈ smin(Lt),
we should have

LT
A ≤ Lt

⋆ + (error from Taylor expansion)+ (error from smin)

3 Soft-Max/Min: Smooth version of Max/Min

� Let x = (x1, . . . , xn) be a vector.

� The soft-max of x is smax(x) = ln(
∑

i exp(xi)).

� Why does it behave like max?

� If xi0 ≫ xi for all i, exp(xi0) ≈
∑

i exp(xi). So ln(
∑

i exp(xi)) ≈ xi0 .

� So smax(x) ≈ max(x).

� The soft-min of x is smin(x) = −smax(−x).

3

� Note min(x) = −max(−x).

� We will consider the scaled version: sminϵ(x) = −1
ϵ smax(−ϵx).

Proposition 3.1. We prove this at the end.

� min(x)− lnn
ϵ ≤ sminϵ(x) ≤ min(x)

� smin′ϵ(x)i =
exp(−ϵxi)∑
j exp(−ϵxj)

� When ϵ ≤ 1/2 and ∥δ∥∞ ≤ 1, sminϵ(x+ δ) ≥ sminϵ(x) + ⟨smin′ϵ(x), δ⟩ − ϵ
∑

i exp(−ϵxi)δ
2
i∑

j exp(−ϵxj)

4 Deriving MWU exactly

� We use sminϵ(L
t) to approximate Lt

⋆.

� Recall that we want to set pt as the gradient of soft-min:

pt ← smin′ϵ(L
t−1)

so

pti =
exp(−ϵLt−1

i)∑
j exp(−ϵL

t−1
j)

� But what is this?

� Recall the MWU algorithm: the weight of expert i is wt+1
i = wt

i · exp(−ϵℓti).
� So wt

i = exp(−ϵLt−1
i).

� Therefore,

pti =
wt
i∑

j w
t
j

.

� We just derived the MWU algorithm!

� Let's analyze it.

� We analyze how much Lt
A and sminϵ(L

t) change each day.

� Lt
A increase exactly

〈
pt, ℓt

〉
by de�nition:

Lt
A − Lt−1

A =
〈
pt, ℓt

〉
� How about sminϵ(L

t)? Via Taylor's expansion, we have

sminϵ(L
t)− sminϵ(L

t−1) = sminϵ(L
t−1 + ℓt)− sminϵ(L

t−1)

≥
〈
smin′ϵ(L

t−1), ℓt
〉
− ϵ

∑
i exp(−ϵL

t−1
i)(ℓti)

2∑
j exp(−ϵL

t−1
j)

as ϵ ≤ 1/2, ∥ℓt∥ ≤ 1.

≥
〈
pt, ℓt

〉
− ϵ
〈
pt, (ℓt)2

〉
where (ℓt)2 := (ℓti)

2 for all i.

4

� That is, sminϵ(L
t) increases at least as much as Lt

A increases (except some error term

ϵ
〈
pt, (ℓt)2

〉
).

� Summing over all t, the sum telescopes to

sminϵ(L
T)− sminϵ(L

0) ≥
T∑
t=1

〈
pt, ℓt

〉
− ϵ
〈
pt, (ℓt)2

〉
= LT

A − ϵ
T∑
t=1

〈
pt, (ℓt)2

〉
� So

LT
A ≤ sminϵ(L

T)− sminϵ(L
0) + ϵ

T∑
t=1

〈
pt, (ℓt)2

〉
≤ min(LT) +

lnn

ϵ
+ ϵ

T∑
t=1

〈
pt, (ℓt)2

〉
≤ LT

⋆ +
lnn

ϵ
+ ϵT

because
〈
pt, (ℓt)2

〉
≤ 1. This proves Theorem 0.1.

� If ℓti ∈ [0, 1], then we have (ℓti)
2 ≤ ℓti. So

T∑
t=1

〈
pt, (ℓt)2

〉
≤

T∑
t=1

〈
pt, ℓt

〉
= LT

A

and so we get

LT
A ≤ LT

⋆ +
lnn

ϵ
+ ϵLT

A,

which proves Theorem 0.2

5 Recap: How to Derive MWU

� How to design an algorithm for choosing experts with no regret property?

� Wishful hope: whenever Lt
A increases, Lt

⋆ = min(Lt) increases by at least the same amount.

� But min is not smooth.

� Actual plan: whenever Lt
A increases, smin(Lt) ≈ min(Lt) increases by at least the same

amount (modulo some small error).

� Since smin is smooth, we now can approximate the change of smin(Lt) per day, which is

just
〈
smin′ϵ(L

t−1), ℓt
〉

� Since the change of Lt
A =

〈
pt, ℓt

〉
, we set pt = smin′ϵ(L

t−1). So

pti =
exp(−ϵLt−1

i)∑
j exp(−ϵL

t−1
j)

.

5

� This is the same thing as saying that pt ∼ wt where wt = exp(−ϵLt−1
i).

� To have wt = exp(−ϵLt−1
i), we just need to multiplicatively update weights

wt+1
i ← wt

i · exp(−ϵℓti).

� This is the exactly what happens in MWU. Done.

6 Low-Level Calculation about Soft-max

� Let x ∈ Rn. De�ne sx(x) =
∑

j exp(xj) for �sum-exp�.

6.1 Upper/Lower Bounds

� sminϵ(x) = min(x) when x concentrates on only 1 entry.

� sminϵ(x) = min(x)− lnn
ϵ when x has uniform value on all entries.

� For other x, we have min(x)− lnn
ϵ ≤ sminϵ(x) ≤ min(x) but I omit the proof.

6.2 Gradient

� We just compute

(smin′ϵ(x))i =
∂

∂xi

−1
ϵ
(ln sx(−ϵx))

=
−1
ϵ
· 1

sx(−ϵx)
· ∂

∂xi
sx(−ϵx)

=
−1
ϵ
· 1

sx(−ϵx)
· exp(−ϵxi) · (−ϵ)

=
1

sx(−ϵx)
· exp(−ϵxi)

6.3 Smooth

� When ϵ ≤ 1/2 and ∥δ∥∞ ≤ 1, we have

sminϵ(x+ δ) ≥ sminϵ(x) +
〈
smin′ϵ(x), δ

〉
− ϵ

∑
i exp(−ϵxi)δ2i
sx(−ϵx)

.

6

� This is because

−sminϵ(x+ δ) =
1

ϵ
ln

(∑
i

exp(−ϵxi − ϵδi)

)

=
1

ϵ
ln

(∑
i

exp(−ϵxi) exp(−ϵδi)

)

≤ 1

ϵ
ln

(∑
i

exp(−ϵxi)(1− ϵδi + (ϵδi)
2

)
ea ≤ 1 + a+ a2∀|a| ≤ 1/2.

=
1

ϵ
ln

(∑
i

exp(−ϵxi)− ϵ
∑
i

exp(−ϵxi)δi + ϵ2
∑
i

exp(−ϵxi)δ2i

)

=
1

ϵ
ln

(
sx(−ϵx)(1− ϵ

∑
i exp(−ϵxi)δi
sx(−ϵx)

+ ϵ2
∑

i exp(−ϵxi)δ2i
sx(−ϵx)

)
= −sminϵ(x) +

1

ϵ
ln

(
1− ϵ

〈
smin′ϵ(x), δ

〉
+ ϵ2

∑
i exp(−ϵxi)δ2i
sx(−ϵx)

)
≤ −sminϵ(x) +

1

ϵ

(
−ϵ
〈
smin′ϵ(x), δ

〉
+ ϵ2

∑
i exp(−ϵxi)δ2i
sx(−ϵx)

)
ln(1 + a) ≤ a

= −smaxϵ(x)−
〈
smax′ϵ(x), δ

〉
+ ϵ

∑
i exp(−ϵxi)δ2i
sx(−ϵx)

Question 6.1. Can you prove this?

sminϵ(x+ δ) ≥ sminϵ(x) +
〈
smin′ϵ(x), δ

〉
− δ⊤smax′′ϵ (x)δ.

I don't know how to prove it.

� This is more beautiful, cleaner, and stronger than the bound we proved above.

� This is because, for any y

y⊤smin′′ϵ (x)y > ϵ

∑
i exp(−ϵxi)y2i∑
j exp(−ϵxj)

.

7

	1 Basic Calculus: Approximating Smooth Functions
	2 Overall Plan
	3 Soft-Max/Min: Smooth version of Max/Min
	4 Deriving MWU exactly
	5 Recap: How to Derive MWU
	6 Low-Level Calculation about Soft-max
	6.1 Upper/Lower Bounds
	6.2 Gradient
	6.3 Smooth

