An Intuitive Proof of MWU

April 10, 2023

o Recall the setting.

— There are n experts and T days.
— At each day t =1,2,...,T , the following happen in order:
1. We choose a distribution p! = (pt, ..., p}) of experts

2. Then, the adversary reveals the loss vector ¢/ = (¢},... ()
3. Our (expected) loss is £, = (p,) =3, piet.

e Goal: our total loss Ly = Zthl % is as good as the total loss of the best expert L, =
min; 7, .

e We want to analyze the MWU algorithm:

Algorithm 1 The Multiplicative Weights Update (MWU) algorithm

MWU (e):
e w1 Vi

e Fort=1,...,T

t
— Follows expert i with probability pt = EQ’;U;
J

T whexp(—ell) Vi

— After ¢! is revealed, wf

Theorem 0.1. For 0 < e <1/2, MWU(e) guarantees that

1
La<L,+el+ 21
€

Theorem 0.2. Suppose (' € [0,1]" for all t. For 0 < e <1/2, MWU(e) guarantees that

1
La<L,+ely+ 2"
€

S0

Inn
Ly < (1 + 26>(L* + T)

e Most proofs in the literature' involved a lot of low-level calculation and the intuition is lost.

"https:/ /lucatrevisan.github.io /40391 /lecturell.pdf
http://www.theoryofcomputing.org/articles/v008a006 /v008a006.pdf

e The proof here:

— All low-level calculation is modularized into the soft-min function.

— Using soft-min, high-level explanation is very intuitive

e The proof is inspired by the paper of Quanrud? and the blog of Zuzic® (they work in a more
specific context of solving LPs).

1 Basic Calculus: Approximating Smooth Functions

e Let f:R — R be a smooth function.
e Suppose you know f(z). Can we approximate f(z +)7 Use Taylor expansion
Pl +8) = F@)+ f/@)0+ 3 f' (@) + .
and, when ¢ is tiny, we have
flw+0) ~ fx) + f'(x)
e What if f: R" — R?

— The first derivative f’(-) € R™ is called the gradient of f.
— The second derivative f”(-) € R™*" is called the Hessian of f.

=

e Suppose you know f(Z). Can we approximate f(Z + 0)? Taylor expansion:

F(@+8) = f(@) + <f’(:z),§> + % <5, f”(f)5> T

and, when [|d]| is tiny, we have

2 Overall Plan

e Let’s forget the MWU algorithm you saw.

Inn
-

— Suppose that we want to derive a very natural algorithm such that Ly < L, + €T +
— The algorithm we derived will be MWU exactly.

e Notation:

- Lt = Zi’:l 7" € R™ encode total loss of all experts after day ¢ (after ¢! is revealed).
— LY = min(L?) := min;(L!) be the total loss of the best expert after day .

_ Lf4 = Ei’:l <pt', Et/> is our total loss after day ¢.

e Wishful hope: whenever L, increases, L! increases by at least the same amount.

https://epubs.siam.org/doi/abs/10.1137/1.9781611976014.11
3https://zuza.github.io/Intuitive-Multiplicative-Weights/

— So after T' days, we have L:{; < LT.

— No regret at all. But this is clearly too good to hope for.
e Suppose, magically, there exists a function smin(L!) where

— smin(L!) ~ min(L!) = L,

— but smin(L?) is smooth.

e Actual plan: whenever L, increases, smin(L') increases by at least the same amount (modulo
some small error).

e For each day,
— The change in smin(L?) (which is a proxy for L!) is
~ <smin’(Lt71),€t>
because smin(+) is smooth.
— By Taylor, we have
smin(L') = smin(L'™! + ¢') ~ smin(L'™") + (smin'(L'"1), ¢')

+ The approximation holds when ¢ is tiny compared to L'~

* We will not assume this assumption in formal proof (but there will be small error
term).

— the change in LY is exactly (p’, (') by definition:
It — Li‘—l i <pt7£t>
— So... how should we set our distribution p’ on each day t? Clearly, we should set
p! < smin’ (L)
so that (smin’(L!™1), ') = (p', ¢*).

e So every time L, increases, smin(L") increases by almost the same amount. As L! ~ smin(L'),
we should have

LY < L! + (error from Taylor expansion) + (error from smin)

Soft-Max/Min: Smooth version of Max/Min

Let © = (x1,...,x,) be a vector.

The soft-max of x is smax(z) = In(}_, exp(x;)).

Why does it behave like max?

— If wj, > x; for all i, exp(z;y) = >, exp(z;). So In(d_, exp(xz;)) ~ x;,.

— So smax(z) ~ max(z).

The soft-min of z is smin(z) = —smax(—z).

— Note min(z) = — max(—zx).

e We will consider the scaled version: smin,(z) = —%smax(—ex).

Proposition 3.1. We prove this at the end.
e min(x) — lnT" < smin¢(z) < min(x)

exp(—ex;)

./ o
[Smlne(l‘)i = m

o When e <1/2 and ||§]|co < 1, smin.(z + §) > smine(z) + (sminl(x),) — e%ﬁﬁ
J

4 Deriving MWU exactly

e We use smin(L?) to approximate L.

Recall that we want to set p' as the gradient of soft-min:

p' « smin’ (L)

SO
' exp(—eL!™h)

pi = =1
Zj eXp(feLj)

But what is this?
— Recall the MWU algorithm: the weight of expert i is w!tt = w! - exp(—ef?).
— So w! = exp(—eLl™).

— Therefore,

We just derived the MWU algorithm!

Let’s analyze it.

We analyze how much LY and smin.(L") change each day.
— LY, increase exactly <pt,€t> by definition:
LYy — L5t = (pt,)
— How about smin.(L!)? Via Taylor’s expansion, we have

smin, (L) — smin (L) = smin (L + ¢%) — smin, (L1)
> exp(—eLih)(4)?

> (smin,(L'"1), 0") — ¢ -
>_jexp(—€eL;)

<pt7£t> — € <pt’ (Zt)2>

where (¢4)% := (£%)? for all i.

as € < 1/2, |0 < 1.

v

— That is, smin.(L') increases at least as much as LY, increases (except some error term
e (p' (€)?))
, :

e Summing over all ¢, the sum telescopes to

T
smine(LT) — smin (LY) > Z P ety —e(p, (6H)?)

t=1
T
I Z (p!
t=1
e So
T
LY < smin (LT) — smin,(L°) + ez (p', (£")?)

t=1

T
< min(LT) + lnTn + € Z <pt, (ﬂt)2>
=1

1
<L{+ e
€
because <pt, (ﬂt)2> < 1. This proves Theorem 0.1.
e If ¢t € [0, 1], then we have (¢)% < £%. So
T T
PG Z (', 1")
t=1 =1
and so we get
1
Lh<rT+ 20y erh
€

which proves Theorem 0.2

5 Recap: How to Derive MWU

e How to design an algorithm for choosing experts with no regret property?
e Wishful hope: whenever L), increases, L, = min(L') increases by at least the same amount.
— But min is not smooth.

e Actual plan: whenever LY increases, smin(L') ~ min(L’) increases by at least the same
amount (modulo some small error).

— Since smin is smooth, we now can approximate the change of smin(L!) per day, which is
just (smin(L'™1), ¢%)
— Since the change of Ly = (p, '), we set p' = smin/(L'"1). So

: exp(—eL:™)
p, = — .
X (el)

e This is the same thing as saying that p’ ~ w’ where w! = exp(—eLﬁ_l).
e To have w! = eXp(—eLg_l), we just need to multiplicatively update weights

witt « w! - exp(—elt).

e This is the exactly what happens in MWU. Done.

6 Low-Level Calculation about Soft-max

e Let z € R". Define sx(z) =}, exp(z;) for “sum-exp”.

6.1 Upper/Lower Bounds

e smin.(z) = min(z) when z concentrates on only 1 entry.

e smin,(z) = min(x) — IHT" when z has uniform value on all entries.

e For other x, we have min(x) — 1“?” < smin(z) < min(z) but I omit the proof.

6.2 Gradient
e We just compute

0 —1
= 8$i7(lnsx(—ex))
I

e sx(—ex) 8xiSX(_€x)

- _71 ' sx(—lex) cexp(—ex;) - (—e)
1

= (=) - exp(—ex;)

(sminl(z));

6.3 Smooth
e When € < 1/2 and ||d]|c < 1, we have

> exp(—eaci)éi2
€)

sx(—ex)

smine(z + 6) > smine(x) + (smin,(z),8) —

e This is because
—smin(z +0) = — ln Zexp —ex; — €0;))
Zexp —ex;) exp(—ed;))

—ex;)(1 —ed; + (eéi)2> e <1+a+a’vja| <1/2.

:fln Zexp —ex;) —eZexp €$15+€228Xp —€x;)0
> exp(€x;)0; ey 9D i exp(e:):z)é
€x)
)02

IN

o=

=3
/\ﬁ/\/\

@

>

”o‘
_/

—ln< x(—ex)(1 — ¢

sx(—ex) sx(—

= —smin,(z) + éln (1 — ¢ (smin(z),8) + 22 Zil()(G;S)Uz >

< —smin,(z) + % (—6 (smin(z),6) + € 221 ‘;:}((IZ(6::)%)5) In(1 +a) < a
5, expl(—cai)?

= —smaXE(l‘) — <smaxe(ﬂi), 6> te Sx(—eib‘)

Question 6.1. Can you prove this?
smin,(z + ¢) > smin(z) + (smin/(v),) — § ' smax! (z)d.
I don’t know how to prove it.

e This is more beautiful, cleaner, and stronger than the bound we proved above.

e This is because, for any y

> exp(—exi)yg
Zj exp(—ex;)

ysmin” (z)y > €

	1 Basic Calculus: Approximating Smooth Functions
	2 Overall Plan
	3 Soft-Max/Min: Smooth version of Max/Min
	4 Deriving MWU exactly
	5 Recap: How to Derive MWU
	6 Low-Level Calculation about Soft-max
	6.1 Upper/Lower Bounds
	6.2 Gradient
	6.3 Smooth

