
Solving General LPs via MWU

April 12, 2023

1 Recap MWU

� Recall the MWU algorithm

Algorithm 1 The Multiplicative Weights Update (MWU) algorithm

MWU(ϵ):

� w1
i ← 1 ∀i

� For t = 1, . . . , T

� Follows expert i with probability pti =
wt

i∑
j w

t
j

� After ℓt is revealed, wt+1
i ← wt

i · (1− ϵℓti) ∀i

� Lmwu :=
∑T

t=1 ℓ
t
mwu

=
∑T

t=1 ⟨pt, ℓt⟩ is our total loss

� Li :=
∑T

t=1 ℓ
t
i is the total loss of the expert i.

Theorem 1.1. For 0 < ϵ ≤ 1/2, MWU(ϵ) guarantees that, for all i,

Lmwu ≤ Li + ϵT +
lnn

ϵ
.

� Let L = (L1, . . . , Ln) be the list of the total loss of all experts.

1



� For any distribution of experts z ∈ ∆n, we have

Lmwu ≤ ⟨L, z⟩+ ϵT +
lnn

ϵ
.

2 The LP Feasibility Problem

� Let ∆n = {x ∈ Rn
≥0 | 1⊤x = 1} be the set of probability distributions over n objects.

� Consider the following problem, given A ∈ [−1, 1]m×n and b ∈ Rm,

Find x ∈ ∆n

s.t. Ax ≤ b.

or return that there is no feasible solution.

� Exercise:

� If we can solve this problem, then we can solve any LP (Hint: binary search).

� The solution will not be exact, but we can get arbitrarily close to optimal solution.

� Today:

� solve a relaxed version of the above problem:

Find x ∈ ∆n

s.t. Ax ≤ b+ 2ϵ1.

or return that there is no feasible solution x ∈ ∆n where Ax ≤ b.

� Time: O(nnz(A) ln(n)/ϵ2).

2



3 The Whack-a-Mole Algorithm

� Natural Idea:

� Keep ��xing� a violated constraint.

� More precisely, how to �x? use MWU

Algorithm 2 Whack-a-Mole on General LPs

� Initialize w1 ← 1 ∈ Rn

� Maintain xt = wt/W t at all time where W t =
∑n

j=1w
t
j.

� For t = 1, . . . , T where T = ln(n)/ϵ2

� If Axt ≤ b+ 2ϵ1, return x = xt.

� Else there is a constraint it ∈ [m] where A(it,·)x
t > b+ 2ϵ,

* wt+1
j ← wt

j · (1− Aitj)∀j ∈ [n]. (�whack constraint it�)

� Return �no feasible solution�.

� Running time: O(nnz(A) ln(n)/ϵ2).

Lemma 3.1. Suppose there exists a feasible solution x∗. Then, the algorithm must return

x ∈ ∆n where Ax ≤ b+ 2ϵ1.

� Suppose for contradiction that after T iterations, x is not returned even if x∗ exists.

� Observe: the Whack-a-Mole algorithm implements MWU(ϵ):

� experts = variables

� We choose a distribution xt = wt/W t ∈ Rn
≥0 on experts.

� Get a loss vector of experts

ℓt = A(it,·) ∈ [−1, 1]n

3



� Then, update the weights

wj ← wj · (1− ϵℓtj)∀j ∈ [n]

exactly as in MWU(ϵ).

� For each day t,

� The loss of MWU is ⟨ℓt, xt⟩ = A(it,·)x
t > bit + 2ϵ

� But we know that ⟨ℓt, x∗⟩ = A(it,·)x
∗ ≤ bit as x

∗ is feasible.

� Summing over all days, we have

Lmwu − ⟨L, x∗⟩ =
T∑
t=1

〈
ℓt, xt

〉
−

〈
ℓt, x∗〉 > 2ϵT

� On the other hand, the no-regret bound implies

Lmwu − ⟨L, x∗⟩ ≤ ϵT +
lnn

ϵ
≤ 2ϵT

because T = lnn
ϵ2
.

� This is a contradiction.

4 Removing Strong Promise

Exercise 4.1. Given the above algorithm, suppose we only promise that

� A ∈ [−ρ, ρ]m×n and

� x ∈ τ ·∆n (i.e.
∑

i xi ≤ τ and xi ≥ 0).

4



Then we can in O(nnz(A) ln(n)(ρτ
ϵ
)2) time

Find x ∈ τ ·∆n

s.t. Ax ≤ b+ 2ϵ1.

or return that there is no feasible solution x ∈ τ ·∆n where Ax ≤ b.

Hint: just scaling and set ϵ as ϵ/τρ.

� This is not great: ρ, τ can be huge.

� The technique for removing this dependency: width-independent MWU

� Not in this class.

� Work for some special classes of LP: when all entries of LPs are non-negative.

5


	1 Recap MWU
	2 The LP Feasibility Problem
	3 The Whack-a-Mole Algorithm
	4 Removing Strong Promise

