Greedy Algorithms
a. Unweighted Interval Scheduling

Interval Scheduling: Problem Definition

* Interval scheduling.
* Job j starts at s, and finishes at f.
* Two jobs compatible if they don't overlap.
* Goal: find maximum subset of mutually compatible jobs.

a

sbs

» Time

Interval Scheduling: Greedy Attempts

* Greedy template: Consider jobs in some natural order.
Take each job provided it's compatible with the ones
already taken.

* [Earliest start time] Consider jobs in ascending order of s;.
* [Earliest finish time] Consider jobs in ascending order of f;.
* [Shortest interval] Consider jobs in ascending order of f; - s..

* [Fewest conflicts] For each job j, count the number of
conflicting jobs c;. Schedule in ascending order of c;.

Interval Scheduling: Greedy Attempts

. counterexample for earliest start time

counterexample for shortest interval

counterexample for fewest conflicts

Interval Scheduling: Greedy Algorithm

* Greedy algorithm: Consider jobs in increasing order
of finish time. Take each job provided it's compatible
with the ones already taken.

Sort jobs by finish times so that £, < £, < ... <
£..

set of jobs selected

A<« ¢
for j =1 ton {
if (job j compatible with A)
A« AU {j}
}

return A

Interval Scheduling: Example

» lTime

Interval Scheduling: Example

N

.G.

» lTime

3 4 5 6 7 8 9

10

1

10

1

Interval Scheduling: Proof

* Theorem. Greedy algorithm is optimal.

e Pf. (by contradiction) greedy-stays-ahead approach
* Assume greedy is not optimal, and let's see what happens.
* Letiy, iy, ... iydenote set of intervals selected by greedy.

* Letj,, j,, ... J;, denote set of intervals in the optimal solution with
iy =]y, I,=]5, ..., i, =] for the largest possible value of r.

job ir finishes before jru1
| |
| 1 |
|
oreccy: NN N B
i
|
|

»
»

or: NN HENDEE BN W BN
!

why not replace job j..1
with job i..1?

Interval Scheduling: Implementation

* Finding the next earliest finishing time of
remaining intervals via linear search:

* O(n2).

 Sorting
 Sort all the requests by finishing time — O(n log n)
* |terate through the sorted array taking the next legal
request — O(n)
* O(nlogn)

Summary

* Scheduling problems are often amenable to greedy
approach

* But there may be many greedy choices and it is
important to select the right one

* Main Takeaway: Greedy-stays-ahead is a useful
proof approach

Greedy Algorithms

b. Minimum Lateness Scheduling

Minimum Lateness Scheduling

* Input: n jobs with length t; and deadline d;
* Simplifying assumption: all deadlines are distinct

* Qutput: a minimum--lateness schedule for the jobs
 Canonlydo one job at atime, no overlap
* The lateness of job i is max{fi— d;,0}
* The lateness of a schedule is max {miax {fi—d;},0}

Length 1 Deadline 2

w1]

Length 2 Deadline 4
Job 2 | | |

Length 3 Deadline 6
Job 3 | | |

Solution: | I |

Job 1: Job 2: Job 3:
done at done at done at
time 1 time 1+2=3 time 1+2+3=6

Possible Greedy Rules

* Choose the shortest job first (min &)?
* Choose the most urgent job first (min di— t;)?
* Others?

Greedy Algorithm: Earliest Deadline First

e Sortjobssothatd;<d,<--<d,

eFori=1, ..,n:
* Schedule job i right after job i — 1finishes

Exchange Argument
* ¢ = greedy schedule, O = some other schedule

* Exchange Argument:
* We can transform O to G by exchanging pairs of jobs
* No exchange increases the lateness of O
 Therefore, the lateness of G is at most that of O
* (G has the minimum possible lateness

Exchange Argument

e G = greedy schedule, O = (supposedly) optimal
schedule

* We say that two jobs i, j are inverted in O if d; < d jbut
Jj comes before i in the schedule
* Observation: greedy has noinversions

Example: two jobs

* Two jobs with deadlines d; < d, and lengths t,, t,
* Greedy schedule: 1, 2
* 0:2, 1 (inversion)

Lateness of O: max(t, —d,, t; +t, —dqy) =t; +t, —d;

Flipping them: max(t; +t, —d,, t; —dq) <t; +t, —dy

Exchange Argument

* We say that two jobs i, j are inverted in O if d;< d;
but j comes before iin O

* Claim: an optimal schedule has no inversions

* Step 1: If O has aninversion, then it hasan inversion i, j
whichare scheduled consecutively in O

» Step 2:if i, j are consecutive jobs that are inverted then
flippingthem only reduces the lateness

Exchange Argument

* Step 1: If O has an inversion, then it hasan inversion i, j
where which are scheduled consecutively in O

* Take an inversion i, j where i and j are closest in the
schedule O

* By definition, d; > d; but j comes before i
* Suppose there is a job k scheduled between k and j.
* Case 1: dy < d;

* In this case j, k is an inversion, contradiction
* Case 2: dy > d;

* Since d; > d;, we have d, > d;

 Therefore, k, i is an inversion, contradiction

Exchange Argument
* Step 2: If i, j are consecutive jobs that are inverted then
flipping them only reduces the lateness

* Does not change the lateness of the other jobs
* Let’s assume these jobs have d; < d; and lengths t;, ¢;

* Assume job j starts at time s in schedule O.
Max lateness of 1 and 2 before flipping:

max(s+tj—dj, S+tj+ti—di)=5+ti+tj—di

Max lateness of 1 and 2 after flipping:
max(s +t; +t; —dj, s+t;—d;) <s+t;+t—d;

Exchange Argument

* We say that two jobs i, j are inverted in O if d;< d ;
but j comes before i in O

* Claim: an optimal schedule has no inversions

* Step 1: If O has aninversion, then it hasan inversion i, j
whichare scheduled consecutively in O

» Step 2:if i, j are consecutive jobs that are inverted then
flippingthem only reduces the lateness

* (G is the unique schedule with no inversions,
lateness(G) < lateness(O)

Greedy Algorithms

c. Interval Scheduling — Exchange Argument

(Unweighted) Interval Scheduling

* Input: n intervals (sj, f;i)
* OQutput: a compatible schedule S with the largest

possible size
* Ascheduleis a subset of intervals S € {1, ...,n}
* A schedule S is compatible if no two i, j € Soverlap

Greedy Algorithm: Earliest Finish First

* Sortintervals sothat f1 < f,< - < fi
* Let S be empty

eFori=1,..,n:
* If interval i doesn’t create a conflict, add i to S

e Return S

Exchange Argument

e LetG =1{Iy ..., ir} be greedy’s schedule
* Let 0 ={J1, ..., js} be some other schedule
* Let k be the first time G and O diverge.

* {in o lg—1t = U o k-1

* g # Jk

Exchange Argument

Let G ={ 1 ..., i} be greedy’s schedule

Let O ={j1, ..., Js} be some other schedule
Let k be the first time G and O diverge.

* {in, o lg—1} = U 0 =1

* g * Jk
* Exchange jj for iy in O.

Greedy Algorithms

Fractional Knapsack

 Like Knapsack, except that every item can be cut or divided
into arbitrarily small quantities (e.g., salt, spices)

* nitems
* Item i has weight w; and value v;
* Knapsack has weight limit W

 Goal:

e Determine (fractions of) items to select, with total weight
at most W, so that total value is maximized

Fractional Knapsack: Example

Capacity (W): 10

wi=7 v =14 vi/wq = 2

w, =6, v, =10 vy /wy = 1.666
ws =4, v3 =6 v3/wz =15

Fractional Knapsack: Greedy Algorithm

e Algorithm:
* Sort in decreasing order of density = value/weight, and
add to knapsack until you cannot fit anymore
e Possibly using only fraction of final item added

Fractional Knapsack: Greedy Algorithm

e Algorithm:
* Sort in decreasing order of density = value/weight, and
add to knapsack until you cannot fit anymore
e Possibly using only fraction of final item added

* Proof by Exchange Argument:
* Suppose V1 /Wy> Uy /Wy > U3 /Wy, ...
 Compare GREEDY and another solution say O.

