
Introduction to Graphs



Graphs: Key Definitions

• Vertices: can be used to represent people, items, 
cities,…

• Edges: represent connections, roads, relations 
between pairs of vertices. 
• Can be directed or undirected.



Example: Social Relations



Example: Public Transport



Example: World Wide Web



Graphs: Key Definitions

• We represent graphs by 𝐺 = 𝑉, 𝐸
• 𝑉 is the set of nodes/vertices

• 𝐸 ⊆ 𝑉 × 𝑉 is the set of edges

• Directed: Edges are ordered pairs 𝑒 = 𝑢, 𝑣 “from 𝑢 to 𝑣”

• Undirected: Edges are unordered 𝑒 = 𝑢, 𝑣 “between 𝑢 and 𝑣”
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Data Structures: Adjacency List

• An adjacency list is an array of lists, each containing 
the neighbors of one of the vertices (or the out-
neighbors if the graph is directed) 



Data Structures: Adjacency Matrix

• The adjacency matrix of a graph G is a matrix of 0s and 
1s, normally represented by a two-dimensional array 
A[1 .. V, 1 .. V ], where each entry indicates whether a 
particular edge is present in G.



Basic Graph Theory: Paths

• A path is a sequence of consecutive edges in 𝐸
• 𝑃 = 𝑢, 𝑤1 , 𝑤1, 𝑤2 , 𝑤2, 𝑤3 , … , 𝑤𝑘−1, 𝑣

• 𝑃 = 𝑢 − 𝑤1 − 𝑤2 − 𝑤3 − ⋯ − 𝑤𝑘−1 − 𝑣

• The length of the path is the # of edges
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Basic Graph Theory: Cycles

• A cycle is a path 𝑣1 − 𝑣2 − ⋯ − 𝑣𝑘 − 𝑣1 and 
𝑣1, … , 𝑣𝑘 are distinct



Basic Graph Theory: Connectivity

• An undirected graph is connected if there is a path 
between every two vertices in the graph.



Basic Graph Theory: Trees

• A simple undirected graph 𝐺 is a tree if:
• 𝐺 is connected

• 𝐺 contains no cycles

• Degree one vertices are leaves.

• A collection of trees is 

called a forest.
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Minimum Spanning Trees



Network Design

• Build a cheap, connected graph

• We are given
• a set of nodes 𝑉 = 𝑣1, … , 𝑣𝑛

• a set of possible edges 𝐸 ⊆ 𝑉 × 𝑉

• a weight function on the edges 𝑤𝑒

• Want to build a network to connect these locations
• Every 𝑣𝑖 , 𝑣𝑗  must be connected

• Must be as cheap as possible

• Many variants of network design



Minimum Spanning Trees (MST)

• Input: a weighted graph 𝐺 = 𝑉, 𝐸, 𝑤𝑒

• Undirected, connected, weights may be negative

• All edge weights are distinct (makes life simpler)

• Output: a spanning tree 𝑇 of minimum cost
• A spanning tree of 𝐺 is a subset of 𝑇 ⊆ 𝐸 of the edges 

such that 𝑉, 𝑇  forms a tree (what’s a tree?                       )

• Cost of a spanning tree 𝑇 is the sum of the edge weights

• Cost(T) =

• MST:



Minimum Spanning Trees (MST)
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Connected Components 

• Connected component: a maximal subset of 
vertices which are all connected in G
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Cuts

• Cut: a subset of nodes 𝑆  Cutset: edges w/ 1 endpoint in cut
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Cut S         =  {4, 5, 8}
Cutset =  (5,6), (5,7), (3,4), (3,5), (7,8)
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Properties of MSTs

• Cut Property: Let 𝑆 be a cut.  Let 𝑒 be the minimum 
weight edge cut by 𝑆.  Then the MST 𝑇∗ contains 𝑒
• We call such an 𝑒 a safe edge



Proof of Cut Property

• Cut Property: Let 𝑆 be a cut.  Let 𝑒 be the minimum 
weight edge cut by 𝑆.  Then the MST 𝑇∗ contains 𝑒

Proof by contradiction: 

Assume 𝑒 is not in the MST. 
Adding it to the MST creates a 
cycle C with at least one other 
edge 𝑓 in the cut set. Replacing 𝑓 with 𝑒 in this MST gives 
us a smaller spanning tree hence the contradiction.
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Why does 𝑓 exist?

Why doesn’t replacing 𝑓 with 𝑒 create new cycle?

Proof of Cut Property

𝑓 

𝑇∗

𝑒

𝑆



Why does replacing 𝑓 with 𝑒 
keep the graph connected?

Proof of Cut Property
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Cycles

• Cycle: a set of edges 𝑣1, 𝑣2 , 𝑣2, 𝑣3 , … , 𝑣𝑘 , 𝑣1

Cycle C  =  (1,2),(2,3),(3,4),(4,5),(5,6),(6,1)
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Cycle Property

• Cycle Property: Let 𝐶 be a cycle.  Let 𝑓 be the 
maximum weight edge in 𝐶.  Then the MST 𝑇∗ does 
not contain 𝑓.
• We call such an 𝑓 a useless edge



Proof of Cycle Property

• Cycle Property: Let 𝐶 be a cycle.  Let 𝑓 be the max 
weight edge in 𝐶.  The MST 𝑇∗ does not contain 𝑓.
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Proof of Cycle Property

• Cycle Property: Let 𝐶 be a cycle.  Let 𝑓 be the max 
weight edge in 𝐶.  The MST 𝑇∗ does not contain 𝑓.

Proof by contradiction: 

Assume 𝑓 is in the MST. 

Let S be one of the connected components we get by 
removing 𝑓 from this MST. There is at least 
one other edge 𝑒 from cycle C in cutset of S. Replacing 𝑓 with 𝑒 
in this MST gives us a smaller spanning tree hence the 
contradiction.
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Ask the Audience

• Assume 𝐺 has distinct edge weights

• True/False?  If 𝑒 is the edge with the smallest 
weight, then 𝑒 is always in the MST 𝑇∗

• True/False?  If 𝑒 is the edge with the largest  
weight, then 𝑒 is never in the MST 𝑇∗



MST Algorithms

• There are several useful MST algorithms

• Kruskal’s Algorithm: start with 𝑇 = ∅, consider edges in 
ascending order, adding edges unless they create a cycle

• Prim’s Algorithm: start with some 𝑠, at each step add 
cheapest edge that grows the connected component

• Borůvka’s Algorithm: start with 𝑇 = ∅, in each round 
add cheapest edge out of each connected component



Graph Optimization
a. Shortest Paths

a. Dijkstra’s Algorithm
b. Bellman-Ford

b. Minimum Spanning Trees
a. Kruskal’s



Kruskal’s Algorithm

• Kruskal’s Informal
• Let 𝑇 = ∅

• For each edge e in ascending order of weight:

• If adding 𝑒 would decrease the number of connected 
components add 𝑒 to 𝑇

• Correctness: every edge we add is safe and every 
edge we don’t add is useless



Practice Kruskal’s Algorithm



Implementing Kruskal’s Algorithm

• Union-Find: group items into components so that 
we can efficiently perform two operations:
• Find(u): lookup which component contains u

• Union(u,v): merge connected components of u,v

• Naïve Union-Find:

• Can implement Union-Find so that
• Find takes 𝑂 1  time

• Any 𝑘 Union operations takes 𝑂 𝑘 log 𝑘  time



Fast Union-Find
• Use an array for current component of each vertex and a 

linked list for items in each component, and keep size of 
each component (always union smaller into larger)

• 1. Largest component has size 

• 2. Every time an item changes component, its new 
component is  the size of its old component

• 3. No item changed components more than  times

• Total time:



Fast Union-Find
• Use an array for current component of each vertex and a 

linked list for items in each component, and keep size of 
each component (always union smaller into larger)

• 1. Largest component has size 

• 2. Every time an item changes component, its new 
component is  the size of its old component

• 3. No item changed components more than  times

• Total time:



Kruskal’s Algorithm (Running Time)

• Kruskal’s:
• Let 𝑇 = ∅

• For each edge e in ascending order of weight:

• If adding 𝑒 would decrease the number of connected 
components add 𝑒 to 𝑇    (“test e”)

• Time to sort:

• Time to test edges:

• Time to add edges:



Graph Optimization
a. Shortest Paths

a. Dijkstra’s Algorithm
b. Bellman-Ford

b. Minimum Spanning Trees
a. Kruskal’s Algorithm
b. Prim’s Algortithm



Prim’s Algorithm

• Prim Informal
• Let 𝑇 = ∅

• Let 𝑠 be some arbitrary node and 𝑆 = 𝑠

• Repeat until 𝑆 = 𝑉
• Find the cheapest edge 𝑒 = 𝑢, 𝑣  cut by 𝑆.  Add 𝑒 to 𝑇 and 

add 𝑣 to 𝑆

• Correctness: every edge we add is safe and T is 
spanning & connected (S is always connected)



Prim’s Algorithm



Practice Prim’s Algorithm
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Prim’s Algorithm

Prim(G=(V,E,w(E)))

   T ← ∅

let Q be a priority queue storing V

value[v] ← ∞, last[v] ← ∅

value[s] ← 𝟎 for some arbitrary 𝒔

while (Q ≠ ∅):

u ← ExtractMin(Q) 

for each v in N[u]:

if v ∈ Q and w(u,v) < value[v]:

DecreaseKey(v,w(u,v))

last[v] ← u

 if u != s:

    add (u, last[u]) to T

return T



Prim’s vs Kruskal’s

• Prim’s Algorithm:
• 𝑂 𝑚 log(𝑛)  
• Iteratively builds one connected component
• Faster in practice on dense graphs

• Kruskal’s Algorithm:
• 𝑂 𝑚 log(𝑛)
• Maintains multiple connected components 

simultaneously
• Faster in practice on sparse graphs



Borůvka’s Algorithm

• Borůvka’s Algorithm (Informal)
Add ALL the safe edges and recurse. 



Borůvka’s Algorithm
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