Introduction to Graphs

Graphs: Key Definitions

* Vertices: can be used to represent people, items,
cities,...

* Edges: represent connections, roads, relations
between pairs of vertices.

e Can be directed or undirected.

10ONS

Social Relati

Example

xample: Public Transport

H H Lowell Haverhill Newburyport/
Rapid Transit and line Tine Rockport
», Line
Key Bus Routes A 3 Oak Grove
&
e
MASSACHUSETTS BAY % West Malden Genter ‘:1
TRANSPORTATION AUTHORITY & & Modtord
MBTA.COM vty & 1 Wellington o
F o oS5
77 o 116
117,
@ _I Sullivan Sq \ l ?ng‘l‘zeatz B Wonderland
. Y%, 117
T Waverley % plowite @ Y Commurity College/ Revere Beach
HERTE i Lechmere Gharlestown %
Line - w w Davis =" R Beachmont
Waltham = Belmont : > H .
Science Park North S Suffolk Downs
/West End () Station t:@ A
71-73 Harvard | ¢ Orient Heights
= A ’ .
Central @ I ; Wood Island
% Q . Q (Y 11 118 R
Kendall + Bowdoin Haymarket 117, Airport
Warcester i / M |T Long H Free shutlle bus
Line - o ‘ RY wNna‘r': A
Newtonville # Griggs St R o - / Maverick ™
BAllston 8t gl LA, Ploasant Sta Charles ¥ G’oyvg;rrl]rt\;?nt > Aliuarium [E]
66 o Q
% Warren St St.Paul St % /MGH 7o,
.) Long i .
Washington St BU West & Soum ol 5]
% Sutherland Rd i StRAuISL g N Qg BU Central Park St X @ Logn
b .
 Chiswick Ad Tl D EL - BU East ciate International
. % Summit Ave 66 a2 o fowes® Airport
#% Chestnut Hill Ave & Blandford St goyiston mart Terminals
% Brandon Hall ’5““ o] Y R
South St S G Kenmore QL sis oowess Downtown Cressing
@oa P Sk X RLERY BT 3 e
o Washington Sg ST A4 et K South Pt
o&‘;@ 2 Tappan St Longwabd #Hynes \ Station =7 (9" ©
QQO\\ 2% Dean Rd o . - D a—>\) . o
(3 Brookline Village Prudential opley Chinatown
% Englewood Ave LV~ 39
Brookline Hills 66 # Symphon)
ee - ymphony, 4) Broadway +Quiney/
Beaconsfield Northeastern = (D« 5q <o Q [xHull
e® s M . y Tufts Medical Andrew Cenior)
Qa(}‘ Reservair useum Fine Arts () y o
o)
2% Chestnut Hill Longwood Medical &) '] Heralds St JFK
Brigham Circle ‘ Back | East Berkeley St /UMass Hinghar
328 Ba i ingham
@ #Fenwood Rd P38 152 Mass [Lnion Parkat Ferry |
% Mission Park / Ave jf Newton St Ugg?nm:r S North Quincy i
e o |
Riverwa Eg Huggles\] Worcester Sq e 1;3 A :
B X Yy / 1] Mass. Ave Y . S@vin Wollaston #
Back of the Hill e g?ggg:% W | onnox st i tiste s[4 Hill Q)
Heath ~ Fields Quincy Center
@ Jackson Sq giecneaicass Corner Fore Riuer
*, ° ; Dudley Sq 23 . Qui hipyard
Shawmut uincy
4 Stony Brook < 861 21 & Adams
\Green St Ashmont | 5y e
) = Greenbush
Rus!:i"nlf’ale E(_:)I:est A Cedar Grove N Line
illage ills .
Highland 32 —\\ putier Braintree
fleednam P Milten
Morton St
West Bellevue Centaliave
Roxbury Valley Rd

28 Capen St
Fairmount
4 @ Mattapan
Stoughton/
Franklin Providence

v 'Y
Middleborough/ Kingston/
Lakeville Plymouth

Example: World Wide Web

Library of Congress: Country
Studies

How Stuff Works Acronym Finder

Dicki Alex Catalogu Bartleby.com: Strunk's
ictionary.com Texnts _ \Element of Style (1218)

The Library of Congress:
}le Weather Channel [The Online Books Page
http://vrvrve.thesaurus.com,

Internet Public Library: Books

Merriam-Webster Online! .
Biography.com
Encyclopedia,com (g Falnfllr

 Library
artleby.com

— MSNEC
Washington Post -
(LN 12 E lopedi T

The OId Farmer's Almanac,—Fo

USA Today Google Image Search

¥ahoo Newsveuw]

es Times
. Web Search Home Page - -
TeniZhtml2:+#39:s Homepage MetaCravler (Gi0-com

Welcome to BaseZ1 Ask Teaves Oh o Local Guide, O

[GMU Project - Free Software = i
Violations of the GPL, LGPL Foun dau]o.. Fsh) SR ':ln :I: ﬂl:: lz::;:s .
and GFDL - GNU Project - F New York Past icrasoft etwor: I[“w Ate-by BFugger - Pagenot I'ound
Telegraph.co.u: ‘Wel Search Home Page -
\ We' Crawler

Hello : Welcome

Loard Smilies

etaPad
Why There Are Not GIF F|Ies'tE‘m Tree - -
CBSN: X T i
on GNU Pages o ation (FSF) evis.com’ (Chicage Tifbune (¥ah Soiavista

Financial Times

—Atlagta Local Guide, .n.llanla

L 2 T
Lo I':Hr lels, Atlanta Re.

A Philosophical GNU - Free
Software Foundation (FSF)
WebMask help - Contents
Ttaly Paper Money INDEX http://canrikipedia. org.-"
Singapore Travel and Hotel Montana Local
. Holels. Moniin
a prima - Wikipedia <

égua_"_i

Main Page - Wikipedia E

=
?

Blogwise
I

Infoporl:a!lnropo!'

| Guide
Minnesota Encyclopedia : MapsTberghi Italia’
- Weather - Travel - History - ia su

118439 37'-1.) n::o;d and the All India

Mozilla Firefoxt) | ol Content Accessib

Blogarama

Creative Commons Deed

E<tal
Creall\re Commons DeedDougal’s Slightly Less Funky
ABoulmeal Homepage

Linux Today - Linux News On'bletype.org : Get Mo\rable
Internet Time. -/Personal

Alex Kinge Litde':s

L Journalized

Level Double-A Conformance to
ity

Guidelines

hitp://validator.w3.org/checkZilla.org
oni: The Source for’,

I A Conformance to Web

OCESSON

[A List Apart,
{W3C HTML Home Pag

+ Web Slandards Pro]ec gt Accesslblllly
i

inas

Online
- fi
o o Tom s Hardware Gty reerer
Welcome to KikuMobile.com ' /piiopo Infoportal i CNEI referer
| Infoportal Ma'i‘-"' hetpe /i 3 : W3C CSS V:f'x'alor:_ Content Accessibility
http://sivikipedia b Ngsaw.u3.ory/cssvalld ATy i dationuidelines 1.0
West Yirginia Encyclopedia : ain_ Page ator : = || N 5
:ias::r-vll.leather T Travel - - Ela_vna stran - Wik’ edija B Vlewa e l.l.hr e‘_’iﬁ: Consortium
Hafan - Wicipedia Lredia GNU Gener al Public License
T (GPL)
Infoportal Infoportal E [Unang P - Wikipedia)(Frae Software [SourceForge
B Tnfoportal; principile “Vikipealzg e s (FSF), GNU Project
- pedia.org/wil
- Infoportal) |.-"Ma|n_Page - 3 Debian/Best Practical Solutions, LLC:
Infopore] e Tnfoportalls——"== hteps/ /1 pedia.org/ The Free Software Definition
{Infoportalnfoportal Infogorla| Wikipedia:Frontispicio - - GNU Project - Free Software |

amrepo Infoportal

Infoportal Wikipedia - hrep:/ Svvvefsforg/

DpenOffice.org

Infoportaliyfopartal HTT*:ﬁe;clzl;r:]k’;* Informationen zu
*¥Kontakli
ationen » [Infopor The K Desktop Environment

Informationen zu Keinfanorta

Opera Software
[Infoportal Welcome to SUSE LINUX
Python Language Website
KlingeltAfne ¥Free86: |The GIMP

wupsr wevevecast.org/bobby/

Graphs: Key Definitions

* We represent graphs by G = (I/, E)
* |/'is the set of nodes/vertices
« E €V XVisthe set of edges

* Directed: Edges are ordered pairs ¢ = (u, v) “from u to v”

* Undirected: Edges are unordered ¢ = (u, v) “between u and v”

Data Structures: Adjacency List

* An adjacency list is an array of lists, each containing
the neighbors of one of the vertices (or the out-
neighbors if the graph is directed)

LT
PIEEIIIROPY
OPPEIRY POLD
P9 pey O
(J(d]

(@)

where each entry indicates whether a

V,1..V],

abcdefghijklm

CO O COCOOOO0O0O0O—-0OC-HC
eoNeoNeoNoNoNolNolNolNoll B el
OO O0OCOOO0O0O0O0O0O0O—=0O-H O
eNeoNeoNoNoNolNolNololNoll BB
ecNoNoNoNoNoR_ NololNeolNolNolNe!
oNeolNeNoell oNellelellelollo el
CO 111100 —+HCQOCO0OO0O
O H OO0 0O0O0C0C0OO0O
N - OO O - OO0CO0OOO
OO O 0O OO OCOOO
O O O 140 OO0 0CO0OO0O
T O O O0O0OOO0OCOCO0O
OH OO —-HOOOOOOO O

1s, normally represented by a two-dimensional array

All ..
particular edge is present in G.

* The adjacency matrix of a graph G is a matrix of Os and

Data Structures: Adjacency Matrix

SR S R Y e s T

Basic Graph Theory: Paths

* A path is a sequence of consecutive edges in E

e P = {(u, Wl), (Wl,Wz), (Wz,W3), ...,(Wk_l, U)}
'P=u—W1—W2—W3—"°—Wk_1—U
* The length of the path is the # of edges

Basic Graph Theory: Cycles

* Acycleisapathv; — v, — - — v, — v, and
V4, ..., Uy are distinct

Basic Graph Theory: Connectivity

* An undirected graph is connected if there is a path

between every two vertices in the graph.

Basic Graph Theory: Trees

* A simple undirected graph G is a tree if:
* (G is connected
* (7 contains no cycles

e Degree one vertices are leaves.

A collection of trees is

called a forest.

Minimum Spanning Trees

Network Design

* Build a cheap, connected graph

* We are given
* asetof nodesV ={vy, ..., v}
e asetof possibleedges E €V XV
* a weight function on the edges w,

 Want to build a network to connect these locations
* Every v;, v; must be connected
 Must be as cheap as possible

* Many variants of network design

Minimum Spanning Trees (MST)

* Input: a weighted graph ¢ = (V, E,{w,})
* Undirected, connected, weights may be negative
* All edge weights are distinct (makes life simpler)

* Output: a spanning tree T of minimum cost

* Aspanning tree of G is a subset of T € E of the edges
such that (I/, T) forms a tree (what’s a tree?)

* Cost of a spanning tree T is the sum of the edge weights
* Cost(T) =

* MST:

Minimum Spanning Trees (MST)

Connected Components

e Connected component: a maximal subset of
vertices which are all connected in G

Cuts

* Cut: a subset of nodes S Cutset: edges w/ 1 endpoint in cut

CutS

{4,5, 8}
Cutset (

5,6), (5,7), (3,4), (3,5), (7,8)

Properties of MSTs

* Cut Property: Let S be a cut. Let e be the minimum
weight edge cut by S. Then the MST T™ contains e

* We call such an e a safe edge

Proof of Cut Property

* Cut Property: Let S be a cut. Let e be the minimum
weight edge cut by S. Then the MST T™ contains e

Proof by contradiction:

Assume e is not in the MST.
Adding it to the MST creates a
cycle C with at least one other
edge f in the cut set. Replacing f with e in this MST gives
us a smaller spanning tree hence the contradiction.

Proof of Cut Property

Why does f exist?

Why doesn’t replacing f with e create new cycle?

Proof of Cut Property

Why does replacing f with e
keep the graph connected?

Cycles

* Cycle: a set of edges (v, V), (V,, V3), ..., (Ui, V1)

Cycle C = (1,2),(2,3),(3,4),(4,5),(5,6),(6,1)

Cycle Property

* Cycle Property: Let C be a cycle. Let f be the
maximum weight edge in C. Then the MST T™ does
not contain f.

* We call such an f a useless edge

Proof of Cycle Property

* Cycle Property: Let C be a cycle. Let f be the max
weight edge in C. The MST T™ does not contain f.

Proof of Cycle Property

* Cycle Property: Let C be a cycle. Let f be the max
weight edge in C. The MST T™ does not contain f.

Proof by contradiction:
Assume f is in the MST.

Let S be one of the connected components we get by T
removing f from this MST. There is at least

one other edge e from cycle Cin cutset of S. Replacing f with e
in this MIST gives us a smaller spanning tree hence the
contradiction.

Ask the Audience

* Assume G has distinct edge weights

* True/False? If e is the edge with the smallest
weight, then e is always in the MST T

* True/False? If e is the edge with the largest
weight, then e is never in the MST T

MST Algorithms

* There are several useful MST algorithms

* Kruskal’s Algorithm: start with T = @, consider edges in
ascending order, adding edges unless they create a cycle

* Prim’s Algorithm: start with some s, at each step add
cheapest edge that grows the connected component

* Borlvka’s Algorithm: start with T = @, in each round
add cheapest edge out of each connected component

Graph Optimization

b. Minimum Spanning Trees
a. Kruskal’s

Kruskal’s Algorithm

* Kruskal’s Informal
e letT =0
* For each edge e in ascending order of weight:

* If adding e would decrease the number of connected
componentsadd eto T

* Correctness: every edge we add is safe and every
edge we don’t add is useless

Practice Kruskal’s Algorithm

Implementing Kruskal’s Algorithm

* Union-Find: group items into components so that
we can efficiently perform two operations:
* Find(u): lookup which component contains u
* Union(u,v): merge connected components of u,v

 Naive Union-Find:

* Can implement Union-Find so that

* Find takes 0(1) time
* Any k Union operations takes O(k logk) time

Fast Union-Find

* Use an array for current component of each vertex and a
linked list for items in each component, and keep size of
each component (always union smaller into larger)

Fast Union-Find

* Use an array for current component of each vertex and a
linked list for items in each component, and keep size of
each component (always union smaller into larger)

e 1. Largest component has size

e 2. Every time an item changes component, its new
component is the size of its old component

* 3. No item changed components more than times
* Total time:

Kruskal’s Algorithm (Running Time)

* Kruskal’s:
e letT =0
* For each edge e in ascending order of weight:

* If adding e would decrease the number of connected
componentsaddetoT (“teste”)

* Time to sort:
* Time to test edges:
* Time to add edges:

Graph Optimization

b. Minimum Spanning Trees

a. Kruskal’s Algorithm
b. Prim’s Algortithm

Prim’s Algorithm

* Prim Informal
e letT =0
* Let s be some arbitrary node and S = {s}

* Repeatuntil S =V

* Find the cheapest edge e = (u, v) cutby S. Add e to T and
addvto S

* Correctness: every edge we add is safe and T is
spanning & connected (S is always connected)

Prim’s Algorithm

16:» =

Practice Prim’s Algorithm

Prim’s Algorithm

Prim(G=(V,E,w(E)))

T «0@
let Q be a priority queue storing V
value[v] « oo, last[v] < 0@
value[s] < 0 for some arbitrary s
while (Q # 0):
u < ExtractMin (Q)
for each v in N[u]:
if v € Q and w(u,v) < value[v]:
DecreaseKey (v,w(u,v))
last[v] < u
if u '= s:
add (u, last[u]) to T
return T

Prim’s vs Kruskal’s

* Prim’s Algorithm:
* O(mlog(n))
* Iteratively builds one connected component
e Faster in practice on dense graphs

* Kruskal’s Algorithm:
* O(mlog(n))

* Maintains multiple connected components
simultaneously

* Faster in practice on sparse graphs

Boruvka’s Algorithm

* Bortivka’s Algorithm (Informal)
Add ALL the safe edges and recurse.

Boruvka’s Algorithm

BorUOVKA(V, E):
F=(V,2)
count « COUNTANDLABEL(F)
while count > 1
ADDALLSAFEEDGES(E, F, count)
count « COUNTANDLABEL(F)
return F

ADDALLSAFEEDGES(E, F, count):
for i « 1 to count
safe[i] « NuULL
for each edge uv € E
if comp(u) # comp(v)
if safe[comp(u)] = NuLL or w(uv) < w(safe[comp(u)])
safe[comp(u)] « uv
if safe[comp(v)] = NuLL or w(uv) < w(safe[comp(v)])
safe[comp(v)] « uv
for i « 1 to count
add safe[i] to F

	Slide 1
	Slide 2: Graphs: Key Definitions
	Slide 3: Example: Social Relations
	Slide 4: Example: Public Transport
	Slide 5: Example: World Wide Web
	Slide 6: Graphs: Key Definitions
	Slide 7: Data Structures: Adjacency List
	Slide 8: Data Structures: Adjacency Matrix
	Slide 9: Basic Graph Theory: Paths
	Slide 10: Basic Graph Theory: Cycles
	Slide 11: Basic Graph Theory: Connectivity
	Slide 12: Basic Graph Theory: Trees
	Slide 13
	Slide 14: Network Design
	Slide 15: Minimum Spanning Trees (MST)
	Slide 16: Minimum Spanning Trees (MST)
	Slide 17: Connected Components
	Slide 18: Cuts
	Slide 19: Properties of MSTs
	Slide 20: Proof of Cut Property
	Slide 21: Proof of Cut Property
	Slide 22: Proof of Cut Property
	Slide 23: Cycles
	Slide 24: Cycle Property
	Slide 25: Proof of Cycle Property
	Slide 26: Proof of Cycle Property
	Slide 27: Ask the Audience
	Slide 28: MST Algorithms
	Slide 29
	Slide 30: Kruskal’s Algorithm
	Slide 31: Practice Kruskal’s Algorithm
	Slide 32: Implementing Kruskal’s Algorithm
	Slide 33: Fast Union-Find
	Slide 34: Fast Union-Find
	Slide 35: Kruskal’s Algorithm (Running Time)
	Slide 36
	Slide 37: Prim’s Algorithm
	Slide 38: Prim’s Algorithm
	Slide 39: Practice Prim’s Algorithm
	Slide 40: Prim’s Algorithm
	Slide 41: Prim’s vs Kruskal’s
	Slide 42: Borůvka’s Algorithm
	Slide 43: Borůvka’s Algorithm

