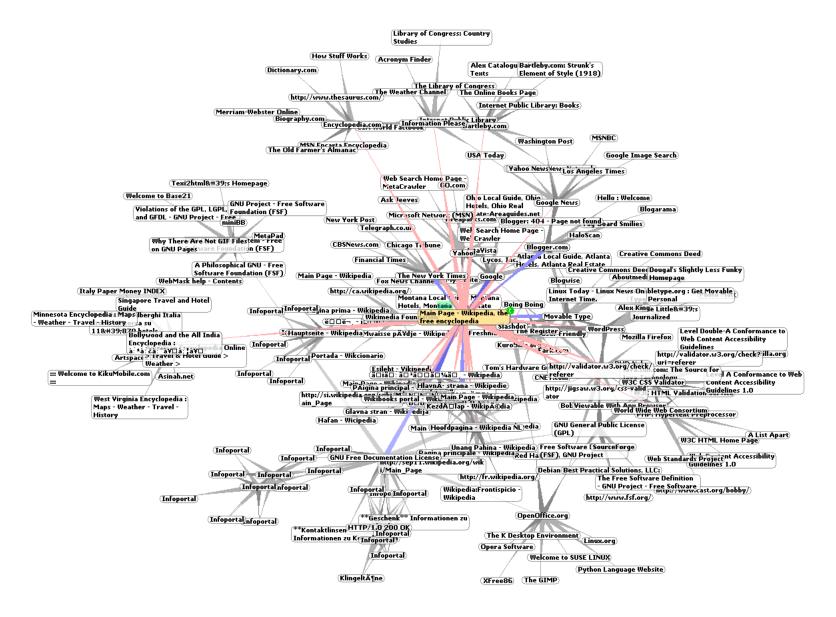
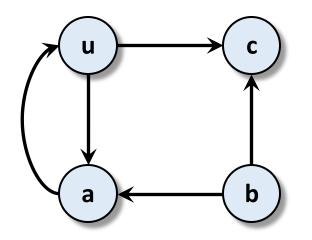

Introduction to Graphs

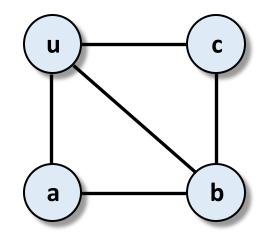
Graphs: Key Definitions

- Vertices: can be used to represent people, items, cities,...
- Edges: represent connections, roads, relations between pairs of vertices.
 - Can be directed or undirected.

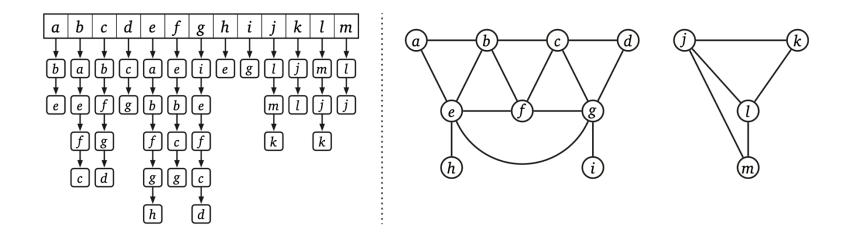

Example: Social Relations

Example: Public Transport




Example: World Wide Web

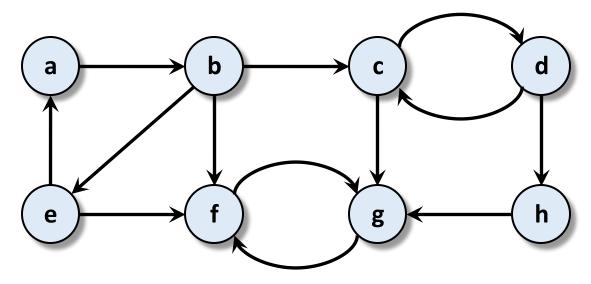
Graphs: Key Definitions


- We represent graphs by G = (V, E)
 - *V* is the set of nodes/vertices
 - $E \subseteq V \times V$ is the set of edges
- **Directed**: Edges are ordered pairs e = (u, v) "from u to v"
- Undirected: Edges are unordered e = (u, v) "between u and v"

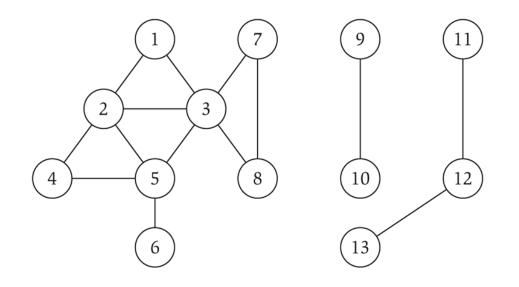
Data Structures: Adjacency List

• An adjacency list is an array of lists, each containing the neighbors of one of the vertices (or the out-neighbors if the graph is directed)

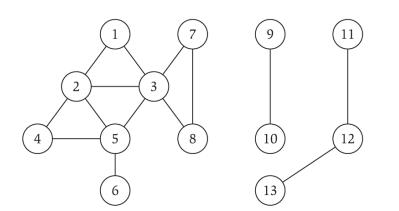
Data Structures: Adjacency Matrix

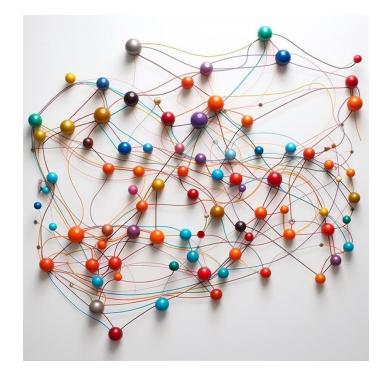

 The adjacency matrix of a graph G is a matrix of 0s and 1s, normally represented by a two-dimensional array A[1..V, 1..V], where each entry indicates whether a particular edge is present in G.

	а	b	С	d	е	f	g	h	i	j	k	l	т
а	0	1	0	0	1	0	0	0	0	0	0	0	0
b	1	0	1	0	1	1	0	0	0	0	0	0	0
с	0	1	0	1	0	1	1	0	0	0	0	0	0
d	0	0	1	0	0	0	1	0	0	0	0	0	0
е	1	1	0	0	0	1	1	1	0	0	0	0	0
f	0	1	1	0	1	0	1	0	0	0	0	0	0
g	0	0	1	1	1	1	0	0	1	0	0	0	0
h	0	0	0	0	1	0	0	0	0	0	0	0	0
i	0	0	0	0	0	0	1	0	0	0	0	0	0
j	0	0	0	0	0	0	0	0	0	0	1	1	1
k	0	0	0	0	0	0	0	0	0	1	0	1	0
l	0	0	0	0	0	0	0	0	0	1	1	0	1
т	0	0	0	0	0	0	0	0	0	1	0	1	0

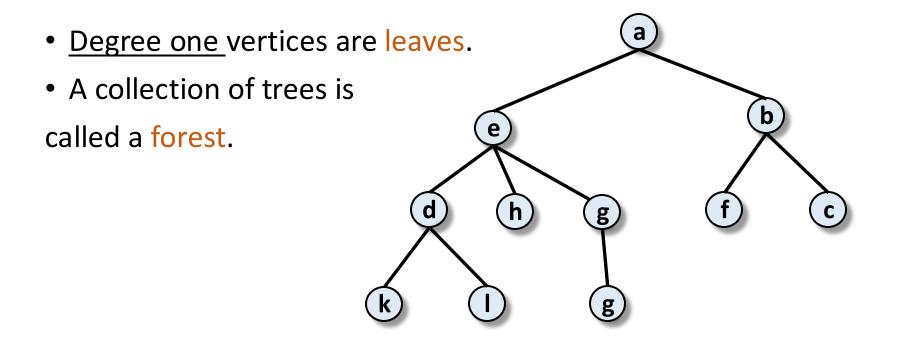

Basic Graph Theory: Paths

- A path is a sequence of consecutive edges in E
 - $P = \{(u, w_1), (w_1, w_2), (w_2, w_3), \dots, (w_{k-1}, v)\}$
 - $P = u w_1 w_2 w_3 \dots w_{k-1} v$
 - The length of the path is the # of edges


Basic Graph Theory: Cycles


• A cycle is a path $v_1 - v_2 - \dots - v_k - v_1$ and v_1, \dots, v_k are distinct

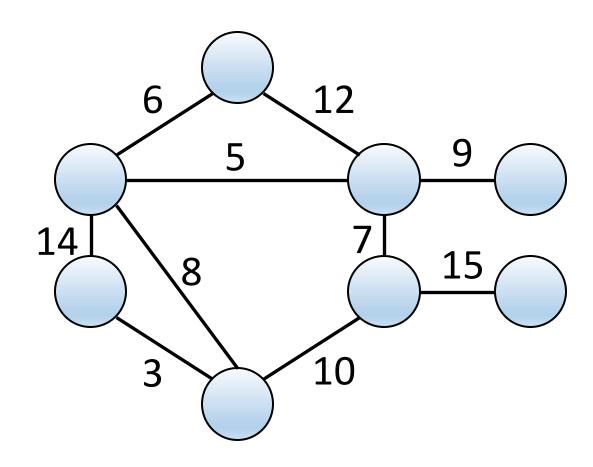
Basic Graph Theory: Connectivity


• An undirected graph is connected if there is a path between every two vertices in the graph.

Basic Graph Theory: Trees

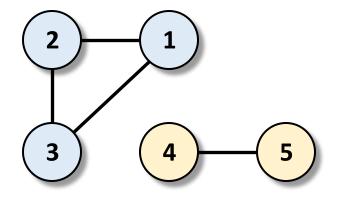
- A simple undirected graph G is a tree if:
 - *G* is connected
 - G contains no cycles

Minimum Spanning Trees


Network Design

- Build a cheap, connected graph
- We are given
 - a set of nodes $V = \{v_1, \dots, v_n\}$
 - a set of possible edges $E \subseteq V \times V$
 - a weight function on the edges w_e
- Want to build a network to connect these locations
 - Every v_i , v_j must be connected
 - Must be as cheap as possible
- Many variants of network design

Minimum Spanning Trees (MST)


- Input: a weighted graph $G = (V, E, \{w_e\})$
 - Undirected, connected, weights may be negative
 - All edge weights are distinct (makes life simpler)
- **Output:** a spanning tree *T* of minimum cost
 - A spanning tree of G is a subset of $T \subseteq E$ of the edges such that (V, T) forms a tree (what's a tree?
 - Cost of a spanning tree T is the sum of the edge weights
 - Cost(T) =
 - MST:

Minimum Spanning Trees (MST)

Connected Components

• Connected component: a maximal subset of vertices which are all connected in G

• Cut: a subset of nodes *S* Cutset: edges w/ 1 endpoint in cut

Cut S	= {4, 5, 8}
Cutset	= (5,6), (5,7), (3,4), (3,5), (7,8)

Properties of MSTs

- Cut Property: Let S be a cut. Let e be the minimum weight edge cut by S. Then the MST T^* contains e
 - We call such an *e* a safe edge

Proof of Cut Property

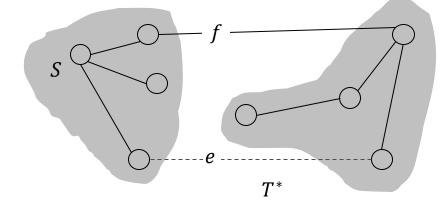
• Cut Property: Let S be a cut. Let e be the minimum weight edge cut by S. Then the MST T* contains e


S

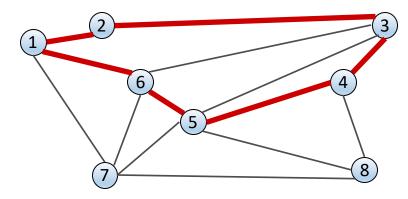
Proof by contradiction:

Assume *e* is not in the MST. Adding it to the MST creates a cycle C with at least one other T^* edge *f* in the cut set. Replacing *f* with *e* in this MST gives us a smaller spanning tree hence the contradiction.

Proof of Cut Property

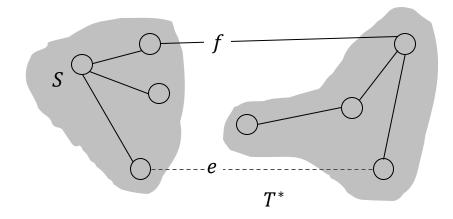

Why does *f* exist?

Why doesn't replacing *f* with *e* create new cycle?


Proof of Cut Property

Why does replacing *f* with *e* keep the graph connected?

• Cycle: a set of edges $(v_1, v_2), (v_2, v_3), \dots, (v_k, v_1)$

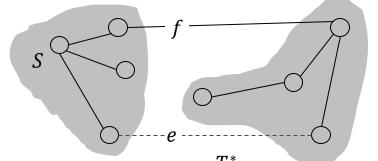

Cycle C = (1,2),(2,3),(3,4),(4,5),(5,6),(6,1)

Cycle Property

- Cycle Property: Let *C* be a cycle. Let *f* be the maximum weight edge in *C*. Then the MST *T*^{*} does not contain *f*.
 - We call such an *f* a useless edge

Proof of Cycle Property

• Cycle Property: Let *C* be a cycle. Let *f* be the max weight edge in *C*. The MST *T*^{*} does not contain *f*.



Proof of Cycle Property

• Cycle Property: Let *C* be a cycle. Let *f* be the max weight edge in *C*. The MST *T*^{*} does not contain *f*.

Proof by contradiction:

Assume f is in the MST.

Let S be one of the connected components we get by f removing f from this MST. There is at least one other edge e from cycle C in cutset of S. Replacing f with e in this MST gives us a smaller spanning tree hence the contradiction.

Ask the Audience

- Assume G has distinct edge weights
- **True/False?** If *e* is the edge with the smallest weight, then *e* is always in the MST *T*^{*}

• **True/False?** If e is the edge with the largest weight, then e is never in the MST T^*

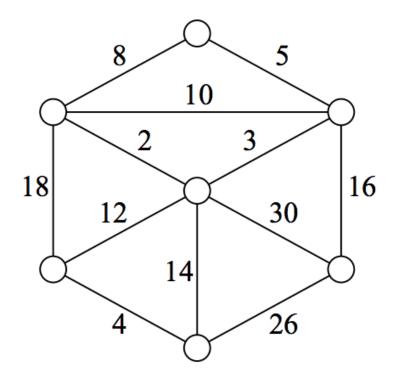
MST Algorithms

- There are several useful MST algorithms
 - Kruskal's Algorithm: start with $T = \emptyset$, consider edges in ascending order, adding edges unless they create a cycle
 - Prim's Algorithm: start with some *s*, at each step add cheapest edge that grows the connected component
 - Borůvka's Algorithm: start with $T = \emptyset$, in each round add cheapest edge out of each connected component

Graph Optimization

- a. Shortest Paths
 - a. Dijkstra's Algorithm
 - b. Bellman-Ford

b. Minimum Spanning Trees


a. Kruskal's

Kruskal's Algorithm

Kruskal's Informal

- Let $T = \emptyset$
- For each edge e in ascending order of weight:
 - If adding *e* would decrease the number of connected components add *e* to *T*
- Correctness: every edge we add is safe and every edge we don't add is useless

Practice Kruskal's Algorithm

Implementing Kruskal's Algorithm

- Union-Find: group items into components so that we can efficiently perform two operations:
 - Find(u): lookup which component contains u
 - Union(u,v): merge connected components of u,v
- Naïve Union-Find:

- Can implement Union-Find so that
 - Find takes O(1) time
 - Any k Union operations takes $O(k \log k)$ time

Fast Union-Find

• Use an *array* for current component of each vertex and a *linked list* for items in each component, and keep size of each component (always union smaller into larger)

Fast Union-Find

• Use an *array* for current component of each vertex and a *linked list* for items in each component, and keep size of each component (always union smaller into larger)

- 1. Largest component has size
- 2. Every time an item changes component, its new component is the size of its old component
- 3. No item changed components more than times
- Total time:

Kruskal's Algorithm (Running Time)

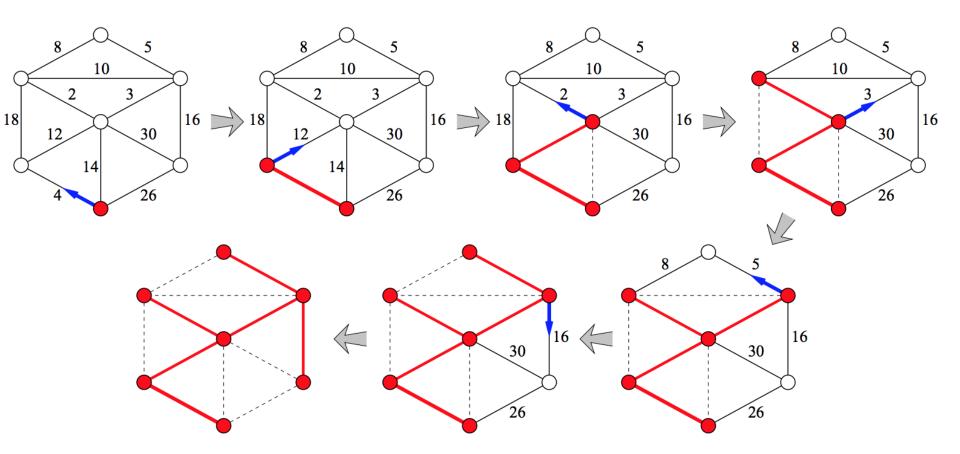
• Kruskal's:

- Let $T = \emptyset$
- For each edge e in ascending order of weight:
 - If adding *e* would decrease the number of connected components add *e* to *T* ("test e")
- Time to sort:
- Time to test edges:
- Time to add edges:

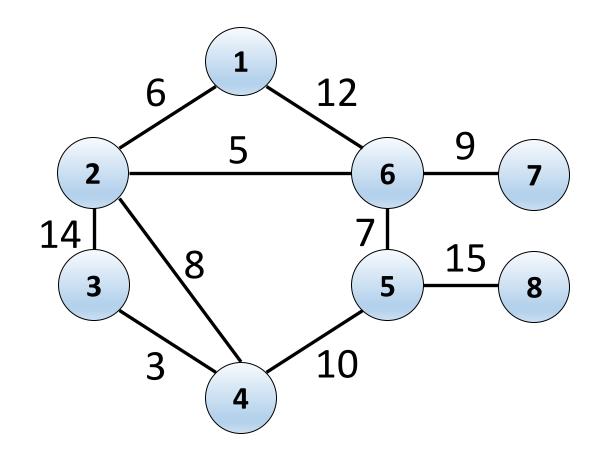
Graph Optimization

- a. Shortest Paths
 - a. Dijkstra's Algorithm
 - b. Bellman-Ford

b. Minimum Spanning Trees


- a. Kruskal's Algorithm
- b. Prim's Algortithm

Prim's Algorithm


Prim Informal

- Let $T = \emptyset$
- Let s be some arbitrary node and $S = \{s\}$
- Repeat until S = V
 - Find the cheapest edge e = (u, v) cut by S. Add e to T and add v to S
- **Correctness:** every edge we add is safe and *T* is spanning & connected (S is always connected)

Prim's Algorithm

Practice Prim's Algorithm

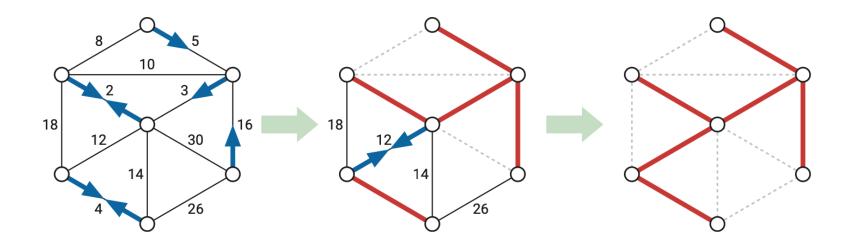
Prim's Algorithm

```
Prim(G=(V, E, w(E)))
    \mathbf{T} \leftarrow \mathbf{\emptyset}
    let Q be a priority queue storing V
        value[v] \leftarrow \infty, last[v] \leftarrow \emptyset
        value[s] \leftarrow 0 for some arbitrary s
    while (Q \neq \emptyset):
        u \leftarrow ExtractMin(Q)
        for each v in N[u]:
            if v \in Q and w(u,v) < value[v]:
                 DecreaseKey(v, w(u, v))
                 last[v] \leftarrow u
        if u != s:
            add (u, last[u]) to T
    return T
```

Prim's vs Kruskal's

• Prim's Algorithm:

- $O(m \log(n))$
- Iteratively builds one connected component
- Faster in practice on dense graphs


Kruskal's Algorithm:

- $O(m \log(n))$
- Maintains multiple connected components simultaneously
- Faster in practice on sparse graphs

Borůvka's Algorithm

Borůvka's Algorithm (Informal)

Add **ALL** the safe edges and recurse.

Borůvka's Algorithm

```
\frac{\text{BOR}\mathring{\text{UVKA}}(V, E):}{F = (V, \emptyset)}
count \leftarrow \text{COUNTANDLABEL}(F)
while count > 1
ADDALLSAFEEDGES(E, F, count)
count \leftarrow \text{COUNTANDLABEL}(F)
return F
```

```
\begin{array}{l} \underline{ADDALLSAFEEDGES}(E, F, count):\\ \text{for } i \leftarrow 1 \text{ to } count\\ safe[i] \leftarrow \text{NULL}\\ \text{for each edge } uv \in E\\ \text{ if } comp(u) \neq comp(v)\\ \text{ if } safe[comp(u)] = \text{NULL } \text{ or } w(uv) < w(safe[comp(u)])\\ safe[comp(u)] \leftarrow uv\\ \text{ if } safe[comp(v)] = \text{NULL } \text{ or } w(uv) < w(safe[comp(v)])\\ safe[comp(v)] \leftarrow uv\\ \text{ for } i \leftarrow 1 \text{ to } count\\ \text{ add } safe[i] \text{ to } F\end{array}
```