
Introduction to Graphs

Graphs: Key Definitions

• Vertices: can be used to represent people, items,
cities,…

• Edges: represent connections, roads, relations
between pairs of vertices.
• Can be directed or undirected.

Example: Social Relations

Example: Public Transport

Example: World Wide Web

Graphs: Key Definitions

• We represent graphs by 𝐺 = 𝑉, 𝐸
• 𝑉 is the set of nodes/vertices

• 𝐸 ⊆ 𝑉 × 𝑉 is the set of edges

• Directed: Edges are ordered pairs 𝑒 = 𝑢, 𝑣 “from 𝑢 to 𝑣”

• Undirected: Edges are unordered 𝑒 = 𝑢, 𝑣 “between 𝑢 and 𝑣”

u c

a b

u c

a b

Data Structures: Adjacency List

• An adjacency list is an array of lists, each containing
the neighbors of one of the vertices (or the out-
neighbors if the graph is directed)

Data Structures: Adjacency Matrix

• The adjacency matrix of a graph G is a matrix of 0s and
1s, normally represented by a two-dimensional array
A[1 .. V, 1 .. V], where each entry indicates whether a
particular edge is present in G.

Basic Graph Theory: Paths

• A path is a sequence of consecutive edges in 𝐸
• 𝑃 = 𝑢, 𝑤1 , 𝑤1, 𝑤2 , 𝑤2, 𝑤3 , … , 𝑤𝑘−1, 𝑣

• 𝑃 = 𝑢 − 𝑤1 − 𝑤2 − 𝑤3 − ⋯ − 𝑤𝑘−1 − 𝑣

• The length of the path is the # of edges

a b

e f

c d

g h

Basic Graph Theory: Cycles

• A cycle is a path 𝑣1 − 𝑣2 − ⋯ − 𝑣𝑘 − 𝑣1 and
𝑣1, … , 𝑣𝑘 are distinct

Basic Graph Theory: Connectivity

• An undirected graph is connected if there is a path
between every two vertices in the graph.

Basic Graph Theory: Trees

• A simple undirected graph 𝐺 is a tree if:
• 𝐺 is connected

• 𝐺 contains no cycles

• Degree one vertices are leaves.

• A collection of trees is

called a forest.

a

be

f cd gh

k l g

Minimum Spanning Trees

Network Design

• Build a cheap, connected graph

• We are given
• a set of nodes 𝑉 = 𝑣1, … , 𝑣𝑛

• a set of possible edges 𝐸 ⊆ 𝑉 × 𝑉

• a weight function on the edges 𝑤𝑒

• Want to build a network to connect these locations
• Every 𝑣𝑖 , 𝑣𝑗 must be connected

• Must be as cheap as possible

• Many variants of network design

Minimum Spanning Trees (MST)

• Input: a weighted graph 𝐺 = 𝑉, 𝐸, 𝑤𝑒

• Undirected, connected, weights may be negative

• All edge weights are distinct (makes life simpler)

• Output: a spanning tree 𝑇 of minimum cost
• A spanning tree of 𝐺 is a subset of 𝑇 ⊆ 𝐸 of the edges

such that 𝑉, 𝑇 forms a tree (what’s a tree?)

• Cost of a spanning tree 𝑇 is the sum of the edge weights

• Cost(T) =

• MST:

Minimum Spanning Trees (MST)

6 12

5

14

3

8

10

15

9

7

Connected Components

• Connected component: a maximal subset of
vertices which are all connected in G

2 1

3 4 5

Cuts

• Cut: a subset of nodes 𝑆 Cutset: edges w/ 1 endpoint in cut

1
3

8

2

6

7

4

5

Cut S = {4, 5, 8}
Cutset = (5,6), (5,7), (3,4), (3,5), (7,8)

S

Properties of MSTs

• Cut Property: Let 𝑆 be a cut. Let 𝑒 be the minimum
weight edge cut by 𝑆. Then the MST 𝑇∗ contains 𝑒
• We call such an 𝑒 a safe edge

Proof of Cut Property

• Cut Property: Let 𝑆 be a cut. Let 𝑒 be the minimum
weight edge cut by 𝑆. Then the MST 𝑇∗ contains 𝑒

Proof by contradiction:

Assume 𝑒 is not in the MST.
Adding it to the MST creates a
cycle C with at least one other
edge 𝑓 in the cut set. Replacing 𝑓 with 𝑒 in this MST gives
us a smaller spanning tree hence the contradiction.

𝑓

𝑇∗

𝑒

𝑆

Why does 𝑓 exist?

Why doesn’t replacing 𝑓 with 𝑒 create new cycle?

Proof of Cut Property

𝑓

𝑇∗

𝑒

𝑆

Why does replacing 𝑓 with 𝑒
keep the graph connected?

Proof of Cut Property

𝑓

𝑇∗

𝑒

𝑆

Cycles

• Cycle: a set of edges 𝑣1, 𝑣2 , 𝑣2, 𝑣3 , … , 𝑣𝑘 , 𝑣1

Cycle C = (1,2),(2,3),(3,4),(4,5),(5,6),(6,1)

1
3

8

2

6

7

4

5

Cycle Property

• Cycle Property: Let 𝐶 be a cycle. Let 𝑓 be the
maximum weight edge in 𝐶. Then the MST 𝑇∗ does
not contain 𝑓.
• We call such an 𝑓 a useless edge

Proof of Cycle Property

• Cycle Property: Let 𝐶 be a cycle. Let 𝑓 be the max
weight edge in 𝐶. The MST 𝑇∗ does not contain 𝑓.

𝑓

𝑇∗

𝑒

𝑆

Proof of Cycle Property

• Cycle Property: Let 𝐶 be a cycle. Let 𝑓 be the max
weight edge in 𝐶. The MST 𝑇∗ does not contain 𝑓.

Proof by contradiction:

Assume 𝑓 is in the MST.

Let S be one of the connected components we get by
removing 𝑓 from this MST. There is at least
one other edge 𝑒 from cycle C in cutset of S. Replacing 𝑓 with 𝑒
in this MST gives us a smaller spanning tree hence the
contradiction.

𝑓

𝑇∗

𝑒

𝑆

Ask the Audience

• Assume 𝐺 has distinct edge weights

• True/False? If 𝑒 is the edge with the smallest
weight, then 𝑒 is always in the MST 𝑇∗

• True/False? If 𝑒 is the edge with the largest
weight, then 𝑒 is never in the MST 𝑇∗

MST Algorithms

• There are several useful MST algorithms

• Kruskal’s Algorithm: start with 𝑇 = ∅, consider edges in
ascending order, adding edges unless they create a cycle

• Prim’s Algorithm: start with some 𝑠, at each step add
cheapest edge that grows the connected component

• Borůvka’s Algorithm: start with 𝑇 = ∅, in each round
add cheapest edge out of each connected component

Graph Optimization
a. Shortest Paths

a. Dijkstra’s Algorithm
b. Bellman-Ford

b. Minimum Spanning Trees
a. Kruskal’s

Kruskal’s Algorithm

• Kruskal’s Informal
• Let 𝑇 = ∅

• For each edge e in ascending order of weight:

• If adding 𝑒 would decrease the number of connected
components add 𝑒 to 𝑇

• Correctness: every edge we add is safe and every
edge we don’t add is useless

Practice Kruskal’s Algorithm

Implementing Kruskal’s Algorithm

• Union-Find: group items into components so that
we can efficiently perform two operations:
• Find(u): lookup which component contains u

• Union(u,v): merge connected components of u,v

• Naïve Union-Find:

• Can implement Union-Find so that
• Find takes 𝑂 1 time

• Any 𝑘 Union operations takes 𝑂 𝑘 log 𝑘 time

Fast Union-Find
• Use an array for current component of each vertex and a

linked list for items in each component, and keep size of
each component (always union smaller into larger)

• 1. Largest component has size

• 2. Every time an item changes component, its new
component is the size of its old component

• 3. No item changed components more than times

• Total time:

Fast Union-Find
• Use an array for current component of each vertex and a

linked list for items in each component, and keep size of
each component (always union smaller into larger)

• 1. Largest component has size

• 2. Every time an item changes component, its new
component is the size of its old component

• 3. No item changed components more than times

• Total time:

Kruskal’s Algorithm (Running Time)

• Kruskal’s:
• Let 𝑇 = ∅

• For each edge e in ascending order of weight:

• If adding 𝑒 would decrease the number of connected
components add 𝑒 to 𝑇 (“test e”)

• Time to sort:

• Time to test edges:

• Time to add edges:

Graph Optimization
a. Shortest Paths

a. Dijkstra’s Algorithm
b. Bellman-Ford

b. Minimum Spanning Trees
a. Kruskal’s Algorithm
b. Prim’s Algortithm

Prim’s Algorithm

• Prim Informal
• Let 𝑇 = ∅

• Let 𝑠 be some arbitrary node and 𝑆 = 𝑠

• Repeat until 𝑆 = 𝑉
• Find the cheapest edge 𝑒 = 𝑢, 𝑣 cut by 𝑆. Add 𝑒 to 𝑇 and

add 𝑣 to 𝑆

• Correctness: every edge we add is safe and T is
spanning & connected (S is always connected)

Prim’s Algorithm

Practice Prim’s Algorithm

1

2 6

3 5

4

7

8

6 12

5

14

3

8

10

15

9

7

Prim’s Algorithm

Prim(G=(V,E,w(E)))

 T ← ∅

let Q be a priority queue storing V

value[v] ← ∞, last[v] ← ∅

value[s] ← 𝟎 for some arbitrary 𝒔

while (Q ≠ ∅):

u ← ExtractMin(Q)

for each v in N[u]:

if v ∈ Q and w(u,v) < value[v]:

DecreaseKey(v,w(u,v))

last[v] ← u

 if u != s:

 add (u, last[u]) to T

return T

Prim’s vs Kruskal’s

• Prim’s Algorithm:
• 𝑂 𝑚 log(𝑛)
• Iteratively builds one connected component
• Faster in practice on dense graphs

• Kruskal’s Algorithm:
• 𝑂 𝑚 log(𝑛)
• Maintains multiple connected components

simultaneously
• Faster in practice on sparse graphs

Borůvka’s Algorithm

• Borůvka’s Algorithm (Informal)
Add ALL the safe edges and recurse.

Borůvka’s Algorithm

	Slide 1
	Slide 2: Graphs: Key Definitions
	Slide 3: Example: Social Relations
	Slide 4: Example: Public Transport
	Slide 5: Example: World Wide Web
	Slide 6: Graphs: Key Definitions
	Slide 7: Data Structures: Adjacency List
	Slide 8: Data Structures: Adjacency Matrix
	Slide 9: Basic Graph Theory: Paths
	Slide 10: Basic Graph Theory: Cycles
	Slide 11: Basic Graph Theory: Connectivity
	Slide 12: Basic Graph Theory: Trees
	Slide 13
	Slide 14: Network Design
	Slide 15: Minimum Spanning Trees (MST)
	Slide 16: Minimum Spanning Trees (MST)
	Slide 17: Connected Components
	Slide 18: Cuts
	Slide 19: Properties of MSTs
	Slide 20: Proof of Cut Property
	Slide 21: Proof of Cut Property
	Slide 22: Proof of Cut Property
	Slide 23: Cycles
	Slide 24: Cycle Property
	Slide 25: Proof of Cycle Property
	Slide 26: Proof of Cycle Property
	Slide 27: Ask the Audience
	Slide 28: MST Algorithms
	Slide 29
	Slide 30: Kruskal’s Algorithm
	Slide 31: Practice Kruskal’s Algorithm
	Slide 32: Implementing Kruskal’s Algorithm
	Slide 33: Fast Union-Find
	Slide 34: Fast Union-Find
	Slide 35: Kruskal’s Algorithm (Running Time)
	Slide 36
	Slide 37: Prim’s Algorithm
	Slide 38: Prim’s Algorithm
	Slide 39: Practice Prim’s Algorithm
	Slide 40: Prim’s Algorithm
	Slide 41: Prim’s vs Kruskal’s
	Slide 42: Borůvka’s Algorithm
	Slide 43: Borůvka’s Algorithm

