Introduction to Graphs



Graphs: Key Definitions

* Vertices: can be used to represent people, items,
cities,...

* Edges: represent connections, roads, relations
between pairs of vertices.

e Can be directed or undirected.
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Graphs: Key Definitions

* We represent graphs by G = (I/, E)
* |/'is the set of nodes/vertices
« E €V XVisthe set of edges

* Directed: Edges are ordered pairs ¢ = (u, v) “from u to v”

* Undirected: Edges are unordered ¢ = (u, v) “between u and v”




Data Structures: Adjacency List

* An adjacency list is an array of lists, each containing
the neighbors of one of the vertices (or the out-
neighbors if the graph is directed)
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1s, normally represented by a two-dimensional array

All ..
particular edge is present in G.

* The adjacency matrix of a graph G is a matrix of Os and

Data Structures: Adjacency Matrix
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Basic Graph Theory: Paths

* A path is a sequence of consecutive edges in E

e P = {(u, Wl), (Wl,Wz), (Wz,W3), ...,(Wk_l, U)}
'P=u—W1—W2—W3—"°—Wk_1—U
* The length of the path is the # of edges



Basic Graph Theory: Cycles

* Acycleisapathv; — v, — - — v, — v, and
V4, ..., Uy are distinct




Basic Graph Theory: Connectivity

* An undirected graph is connected if there is a path

between every two vertices in the graph.




Basic Graph Theory: Trees

* A simple undirected graph G is a tree if:
* (G is connected
* (7 contains no cycles

e Degree one vertices are leaves.

A collection of trees is

called a forest.



Minimum Spanning Trees



Network Design

* Build a cheap, connected graph

* We are given
* asetof nodesV ={vy, ..., v}
e asetof possibleedges E €V XV
* a weight function on the edges w,

 Want to build a network to connect these locations
* Every v;, v; must be connected
 Must be as cheap as possible

* Many variants of network design



Minimum Spanning Trees (MST)

* Input: a weighted graph ¢ = (V, E,{w,})
* Undirected, connected, weights may be negative
* All edge weights are distinct (makes life simpler)

* Output: a spanning tree T of minimum cost

* Aspanning tree of G is a subset of T € E of the edges
such that (I/, T) forms a tree (what’s a tree? )

* Cost of a spanning tree T is the sum of the edge weights
* Cost(T) =

* MST:



Minimum Spanning Trees (MST)




Connected Components

e Connected component: a maximal subset of
vertices which are all connected in G



Cuts

* Cut: a subset of nodes S  Cutset: edges w/ 1 endpoint in cut

CutS

{4,5, 8}
Cutset (

5,6), (5,7), (3,4), (3,5), (7,8)




Properties of MSTs

* Cut Property: Let S be a cut. Let e be the minimum
weight edge cut by S. Then the MST T™ contains e

* We call such an e a safe edge



Proof of Cut Property

* Cut Property: Let S be a cut. Let e be the minimum
weight edge cut by S. Then the MST T™ contains e

Proof by contradiction:

Assume e is not in the MST.
Adding it to the MST creates a
cycle C with at least one other
edge f in the cut set. Replacing f with e in this MST gives
us a smaller spanning tree hence the contradiction.




Proof of Cut Property

Why does f exist?

Why doesn’t replacing f with e create new cycle?



Proof of Cut Property

Why does replacing f with e
keep the graph connected?




Cycles

* Cycle: a set of edges (v, V), (V,, V3), ..., (Ui, V1)

Cycle C = (1,2),(2,3),(3,4),(4,5),(5,6),(6,1)




Cycle Property

* Cycle Property: Let C be a cycle. Let f be the
maximum weight edge in C. Then the MST T™ does
not contain f.

* We call such an f a useless edge



Proof of Cycle Property

* Cycle Property: Let C be a cycle. Let f be the max
weight edge in C. The MST T™ does not contain f.




Proof of Cycle Property

* Cycle Property: Let C be a cycle. Let f be the max
weight edge in C. The MST T™ does not contain f.

Proof by contradiction:
Assume f is in the MST.

Let S be one of the connected components we get by T
removing f from this MST. There is at least

one other edge e from cycle Cin cutset of S. Replacing f with e
in this MIST gives us a smaller spanning tree hence the
contradiction.




Ask the Audience

* Assume G has distinct edge weights

* True/False? If e is the edge with the smallest
weight, then e is always in the MST T

* True/False? If e is the edge with the largest
weight, then e is never in the MST T



MST Algorithms

* There are several useful MST algorithms

* Kruskal’s Algorithm: start with T = @, consider edges in
ascending order, adding edges unless they create a cycle

* Prim’s Algorithm: start with some s, at each step add
cheapest edge that grows the connected component

* Borlvka’s Algorithm: start with T = @, in each round
add cheapest edge out of each connected component



Graph Optimization

b. Minimum Spanning Trees
a. Kruskal’s



Kruskal’s Algorithm

* Kruskal’s Informal
e letT =0
* For each edge e in ascending order of weight:

* If adding e would decrease the number of connected
componentsadd eto T

* Correctness: every edge we add is safe and every
edge we don’t add is useless



Practice Kruskal’s Algorithm




Implementing Kruskal’s Algorithm

* Union-Find: group items into components so that
we can efficiently perform two operations:
* Find(u): lookup which component contains u
* Union(u,v): merge connected components of u,v

 Naive Union-Find:

* Can implement Union-Find so that

* Find takes 0(1) time
* Any k Union operations takes O(k logk) time



Fast Union-Find

* Use an array for current component of each vertex and a
linked list for items in each component, and keep size of
each component (always union smaller into larger)



Fast Union-Find

* Use an array for current component of each vertex and a
linked list for items in each component, and keep size of
each component (always union smaller into larger)

e 1. Largest component has size

e 2. Every time an item changes component, its new
component is the size of its old component

* 3. No item changed components more than times
* Total time:



Kruskal’s Algorithm (Running Time)

* Kruskal’s:
e letT =0
* For each edge e in ascending order of weight:

* If adding e would decrease the number of connected
componentsaddetoT (“teste”)

* Time to sort:
* Time to test edges:
* Time to add edges:



Graph Optimization

b. Minimum Spanning Trees

a. Kruskal’s Algorithm
b. Prim’s Algortithm



Prim’s Algorithm

* Prim Informal
e letT =0
* Let s be some arbitrary node and S = {s}

* Repeatuntil S =V

* Find the cheapest edge e = (u, v) cutby S. Add e to T and
addvto S

* Correctness: every edge we add is safe and T is
spanning & connected (S is always connected)



Prim’s Algorithm

16:» =



Practice Prim’s Algorithm




Prim’s Algorithm

Prim(G=(V,E,w(E)))

T «0@
let Q be a priority queue storing V
value[v] « oo, last[v] < 0@
value[s] < 0 for some arbitrary s
while (Q # 0):
u < ExtractMin (Q)
for each v in N[u]:
if v € Q and w(u,v) < value[v]:
DecreaseKey (v,w(u,v))
last[v] < u
if u '= s:
add (u, last[u]) to T
return T



Prim’s vs Kruskal’s

* Prim’s Algorithm:
* O(mlog(n))
* Iteratively builds one connected component
e Faster in practice on dense graphs

* Kruskal’s Algorithm:
* O(mlog(n))

* Maintains multiple connected components
simultaneously

* Faster in practice on sparse graphs



Boruvka’s Algorithm

* Bortivka’s Algorithm (Informal)
Add ALL the safe edges and recurse.




Boruvka’s Algorithm

BorUOVKA(V, E):
F=(V,2)
count « COUNTANDLABEL(F)
while count > 1
ADDALLSAFEEDGES(E, F, count)
count « COUNTANDLABEL(F)
return F

ADDALLSAFEEDGES(E, F, count):
for i « 1 to count
safe[i] « NuULL
for each edge uv € E
if comp(u) # comp(v)
if safe[comp(u)] = NuLL or w(uv) < w(safe[comp(u)])
safe[comp(u)] « uv
if safe[ comp(v)] = NuLL or w(uv) < w(safe[comp(v)])
safe[comp(v)] « uv
for i « 1 to count
add safe[i] to F
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