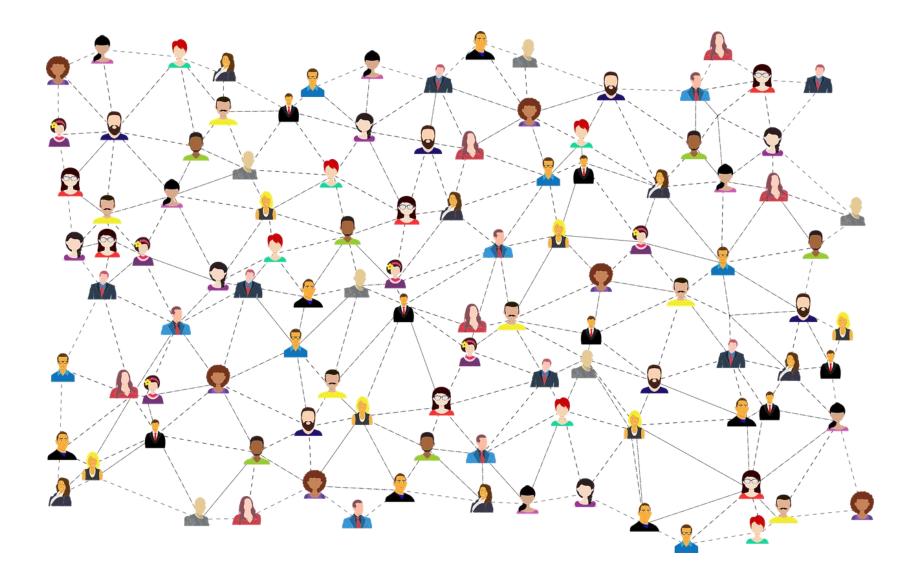
Introduction to Graphs

### **Graphs: Key Definitions**

- Vertices: can be used to represent people, items, cities,...
- Edges: represent connections, roads, relations between pairs of vertices.
  - Can be directed or undirected.

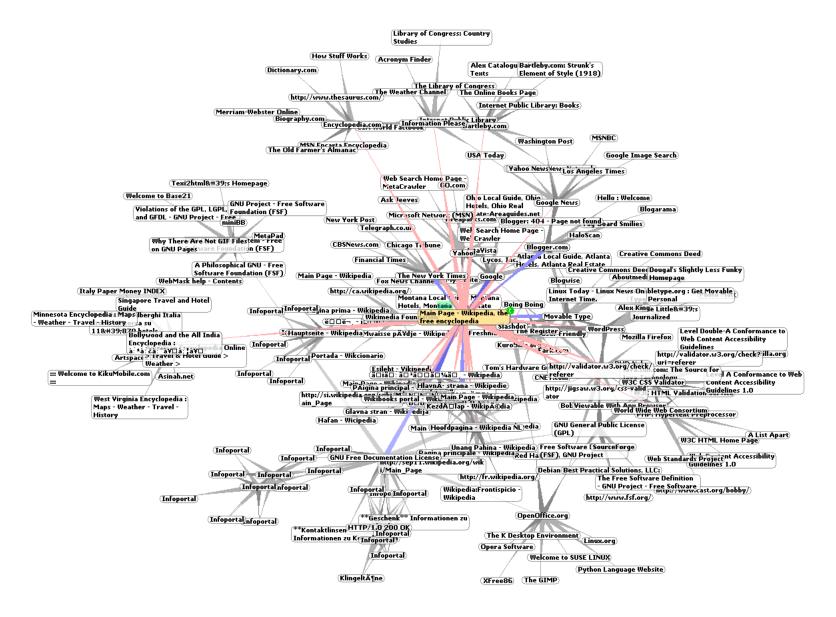
## **Example: Social Relations**



## **Example: Public Transport**

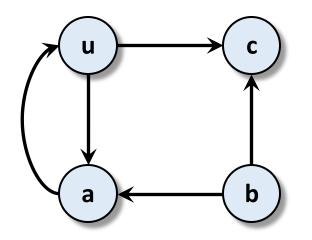


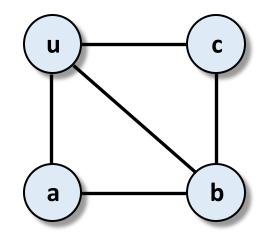
## **Example: World Wide Web**



### **Graphs: Key Definitions**

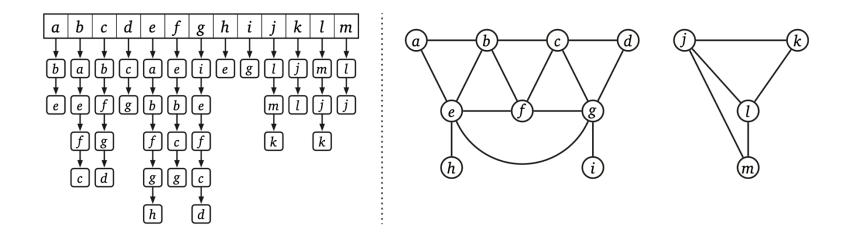
- We represent graphs by G = (V, E)
  - *V* is the set of nodes/vertices
  - $E \subseteq V \times V$  is the set of edges
- **Directed**: Edges are ordered pairs e = (u, v) "from u to v"
- Undirected: Edges are unordered e = (u, v) "between u and v"





### Data Structures: Adjacency List

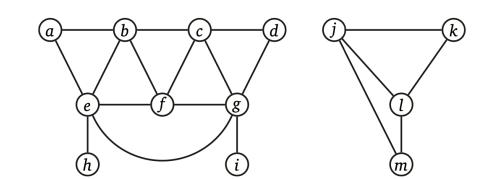
• An adjacency list is an array of lists, each containing the neighbors of one of the vertices (or the out-neighbors if the graph is directed)



### Data Structures: Adjacency Matrix

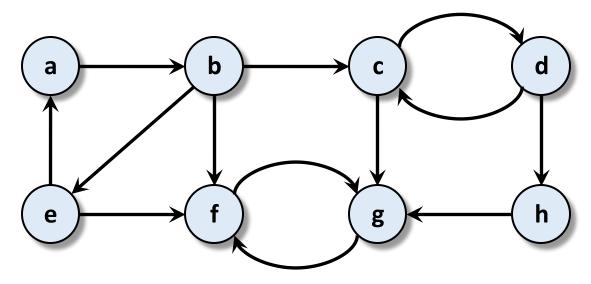
 The adjacency matrix of a graph G is a matrix of 0s and 1s, normally represented by a two-dimensional array A[1..V, 1..V], where each entry indicates whether a particular edge is present in G.

|   | а | b | С | d | е | f | g | h | i | j | k | l | т |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| а | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| b | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| с | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| d | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| е | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
| f | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| g | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| h | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| i | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| j | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 |
| k | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 |
| l | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 |
| т | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 |



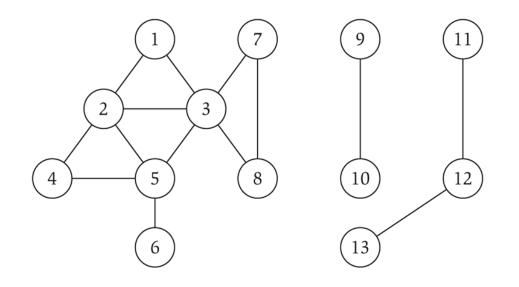
### **Basic Graph Theory: Paths**

- A path is a sequence of consecutive edges in E
  - $P = \{(u, w_1), (w_1, w_2), (w_2, w_3), \dots, (w_{k-1}, v)\}$
  - $P = u w_1 w_2 w_3 \dots w_{k-1} v$
  - The length of the path is the # of edges



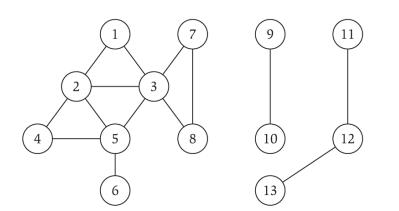
### **Basic Graph Theory: Cycles**

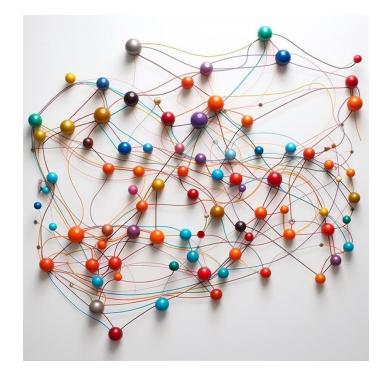
• A cycle is a path  $v_1 - v_2 - \dots - v_k - v_1$  and  $v_1, \dots, v_k$  are distinct



### **Basic Graph Theory: Connectivity**

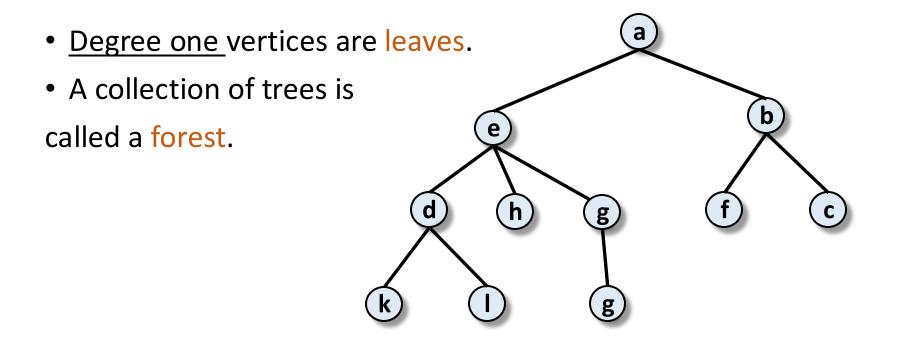
• An undirected graph is connected if there is a path between every two vertices in the graph.





### **Basic Graph Theory: Trees**

- A simple undirected graph G is a tree if:
  - *G* is connected
  - G contains no cycles



Minimum Spanning Trees

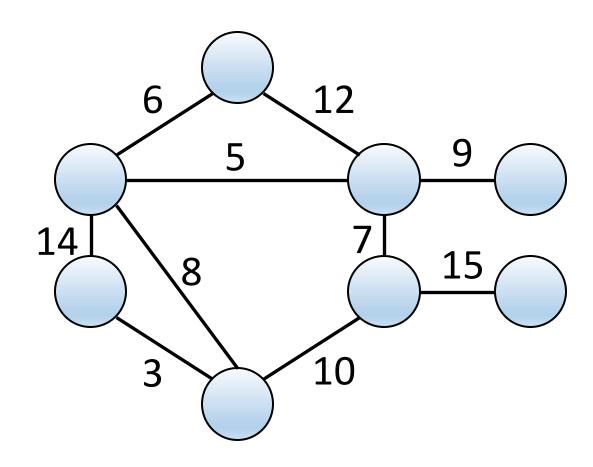
## Network Design

- Build a cheap, connected graph
- We are given
  - a set of nodes  $V = \{v_1, \dots, v_n\}$
  - a set of possible edges  $E \subseteq V \times V$
  - a weight function on the edges w<sub>e</sub>
- Want to build a network to connect these locations
  - Every  $v_i$ ,  $v_j$  must be connected
  - Must be as cheap as possible
- Many variants of network design

# Minimum Spanning Trees (MST)

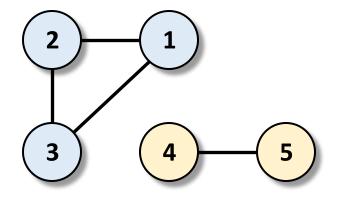
- Input: a weighted graph  $G = (V, E, \{w_e\})$ 
  - Undirected, connected, weights may be negative
  - All edge weights are distinct (makes life simpler)
- **Output:** a spanning tree *T* of minimum cost
  - A spanning tree of G is a subset of  $T \subseteq E$  of the edges such that (V, T) forms a tree (what's a tree?
  - Cost of a spanning tree T is the sum of the edge weights
    - Cost(T) =
    - MST:

## Minimum Spanning Trees (MST)



### **Connected Components**

• Connected component: a maximal subset of vertices which are all connected in G





#### • Cut: a subset of nodes *S* Cutset: edges w/ 1 endpoint in cut



| Cut S  | = {4, 5, 8}                         |
|--------|-------------------------------------|
| Cutset | = (5,6), (5,7), (3,4), (3,5), (7,8) |

### **Properties of MSTs**

- Cut Property: Let S be a cut. Let e be the minimum weight edge cut by S. Then the MST  $T^*$  contains e
  - We call such an *e* a safe edge

## Proof of Cut Property

• Cut Property: Let S be a cut. Let e be the minimum weight edge cut by S. Then the MST T\* contains e

S

#### Proof by contradiction:

Assume *e* is not in the MST. Adding it to the MST creates a cycle C with at least one other  $T^*$ edge *f* in the cut set. Replacing *f* with *e* in this MST gives us a smaller spanning tree hence the contradiction.

### **Proof of Cut Property**

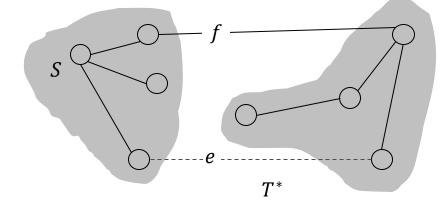
Why does *f* exist?



Why doesn't replacing *f* with *e* create new cycle?

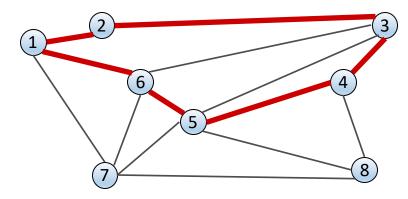
### **Proof of Cut Property**

Why does replacing *f* with *e* keep the graph connected?





• Cycle: a set of edges  $(v_1, v_2), (v_2, v_3), \dots, (v_k, v_1)$ 



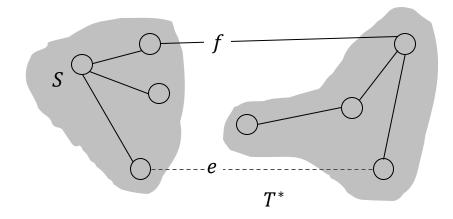
Cycle C = (1,2),(2,3),(3,4),(4,5),(5,6),(6,1)

## **Cycle Property**

- Cycle Property: Let *C* be a cycle. Let *f* be the maximum weight edge in *C*. Then the MST *T*<sup>\*</sup> does not contain *f*.
  - We call such an *f* a useless edge

### **Proof of Cycle Property**

• Cycle Property: Let *C* be a cycle. Let *f* be the max weight edge in *C*. The MST *T*<sup>\*</sup> does not contain *f*.

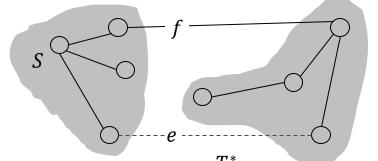


## **Proof of Cycle Property**

• Cycle Property: Let *C* be a cycle. Let *f* be the max weight edge in *C*. The MST *T*<sup>\*</sup> does not contain *f*.

Proof by contradiction:

Assume f is in the MST.



Let S be one of the connected components we get by f removing f from this MST. There is at least one other edge e from cycle C in cutset of S. Replacing f with e in this MST gives us a smaller spanning tree hence the contradiction.

### Ask the Audience

- Assume G has distinct edge weights
- **True/False?** If *e* is the edge with the smallest weight, then *e* is always in the MST *T*<sup>\*</sup>

• **True/False?** If e is the edge with the largest weight, then e is never in the MST  $T^*$ 

## MST Algorithms

- There are several useful MST algorithms
  - Kruskal's Algorithm: start with  $T = \emptyset$ , consider edges in ascending order, adding edges unless they create a cycle
  - Prim's Algorithm: start with some *s*, at each step add cheapest edge that grows the connected component
  - Borůvka's Algorithm: start with  $T = \emptyset$ , in each round add cheapest edge out of each connected component

#### **Graph Optimization**

- a. Shortest Paths
  - a. Dijkstra's Algorithm
  - b. Bellman-Ford

#### b. Minimum Spanning Trees

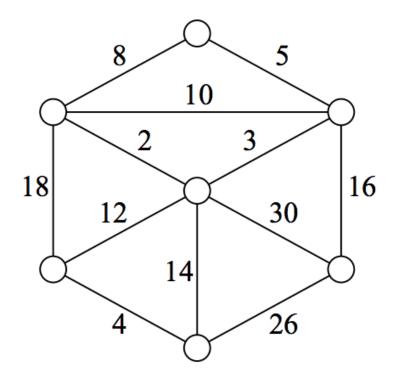
a. Kruskal's

## Kruskal's Algorithm

#### Kruskal's Informal

- Let  $T = \emptyset$
- For each edge e in ascending order of weight:
  - If adding *e* would decrease the number of connected components add *e* to *T*
- Correctness: every edge we add is safe and every edge we don't add is useless

### Practice Kruskal's Algorithm



## Implementing Kruskal's Algorithm

- Union-Find: group items into components so that we can efficiently perform two operations:
  - Find(u): lookup which component contains u
  - Union(u,v): merge connected components of u,v
- Naïve Union-Find:

- Can implement Union-Find so that
  - Find takes O(1) time
  - Any k Union operations takes  $O(k \log k)$  time

## Fast Union-Find

• Use an *array* for current component of each vertex and a *linked list* for items in each component, and keep size of each component (always union smaller into larger)

## Fast Union-Find

• Use an *array* for current component of each vertex and a *linked list* for items in each component, and keep size of each component (always union smaller into larger)

- 1. Largest component has size
- 2. Every time an item changes component, its new component is the size of its old component
- 3. No item changed components more than times
- Total time:

# Kruskal's Algorithm (Running Time)

#### • Kruskal's:

- Let  $T = \emptyset$
- For each edge e in ascending order of weight:
  - If adding *e* would decrease the number of connected components add *e* to *T* ("test e")
- Time to sort:
- Time to test edges:
- Time to add edges:

#### **Graph Optimization**

- a. Shortest Paths
  - a. Dijkstra's Algorithm
  - b. Bellman-Ford

### b. Minimum Spanning Trees

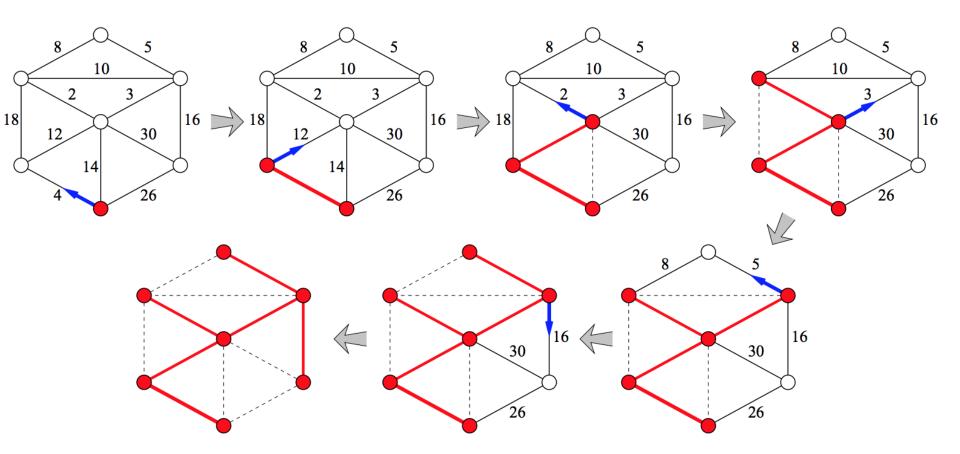
- a. Kruskal's Algorithm
- b. Prim's Algortithm

## Prim's Algorithm

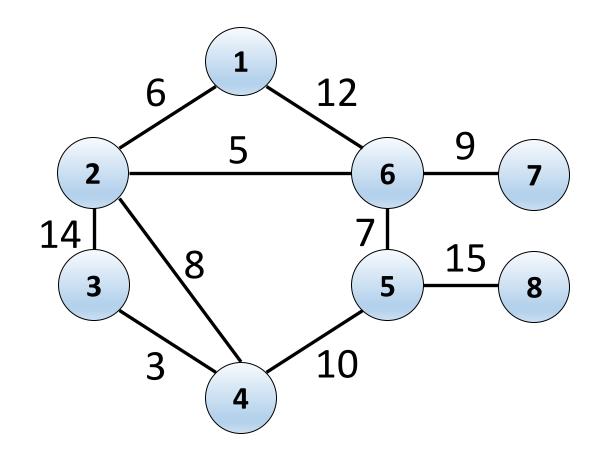
#### Prim Informal

- Let  $T = \emptyset$
- Let s be some arbitrary node and  $S = \{s\}$
- Repeat until S = V
  - Find the cheapest edge e = (u, v) cut by S. Add e to T and add v to S
- **Correctness:** every edge we add is safe and *T* is spanning & connected (S is always connected)

### Prim's Algorithm



### Practice Prim's Algorithm



## Prim's Algorithm

```
Prim(G=(V, E, w(E)))
    \mathbf{T} \leftarrow \mathbf{\emptyset}
    let Q be a priority queue storing V
        value[v] \leftarrow \infty, last[v] \leftarrow \emptyset
        value[s] \leftarrow 0 for some arbitrary s
    while (Q \neq \emptyset):
        u \leftarrow ExtractMin(Q)
        for each v in N[u]:
            if v \in Q and w(u,v) < value[v]:
                 DecreaseKey(v, w(u, v))
                 last[v] \leftarrow u
        if u != s:
            add (u, last[u]) to T
    return T
```

## Prim's vs Kruskal's

#### • Prim's Algorithm:

- $O(m \log(n))$
- Iteratively builds one connected component
- Faster in practice on dense graphs

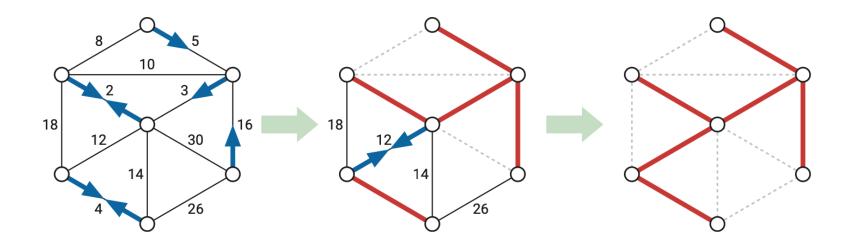
#### Kruskal's Algorithm:

- $O(m \log(n))$
- Maintains multiple connected components simultaneously
- Faster in practice on sparse graphs

## Borůvka's Algorithm

#### Borůvka's Algorithm (Informal)

Add **ALL** the safe edges and recurse.



## Borůvka's Algorithm

```
\frac{\text{BOR}\mathring{\text{UVKA}}(V, E):}{F = (V, \emptyset)}
count \leftarrow \text{COUNTANDLABEL}(F)
while count > 1
ADDALLSAFEEDGES(E, F, count)
count \leftarrow \text{COUNTANDLABEL}(F)
return F
```

```
\begin{array}{l} \underline{ADDALLSAFEEDGES}(E, F, count):\\ \text{for } i \leftarrow 1 \text{ to } count\\ safe[i] \leftarrow \text{NULL}\\ \text{for each edge } uv \in E\\ \text{ if } comp(u) \neq comp(v)\\ \text{ if } safe[comp(u)] = \text{NULL } \text{ or } w(uv) < w(safe[comp(u)])\\ safe[comp(u)] \leftarrow uv\\ \text{ if } safe[comp(v)] = \text{NULL } \text{ or } w(uv) < w(safe[comp(v)])\\ safe[comp(v)] \leftarrow uv\\ \text{ for } i \leftarrow 1 \text{ to } count\\ \text{ add } safe[i] \text{ to } F\end{array}
```