
Sublinear Time Algorithms for MST

Minimum Spanning Trees (MST)

• In our last lecture, we saw algorithms that find an
MST in 𝑂(𝑚 log 𝑛) time, which is near-linear in the
input size.

• But can we do better?

• In this lecture, we will see an algorithm that runs in
sublinear time, provided that we are only interested
in approximating the cost of MST.

Query Access

• Adjacency List Model:

Minimum Spanning Trees (MST)

• Theorem*: There is an algorithm that runs in time 𝑂 𝑊3𝑑𝜖−2

and returns a value ෫𝑀𝑆𝑇 such that

𝐸 ෫𝑀𝑆𝑇 ∈ 1 ± 𝜖 𝑀𝑆𝑇.

• 𝑑: the maximum degree in the graph.

• 𝑊: maximum edge weight.

• 𝜖: any desirable parameter in (0, 1].

• Remark: Often mere expectation is not enough and we desire a
stronger bound of the form Pr ෫𝑀𝑆𝑇 ∈ 1 ± 𝜖 𝑀𝑆𝑇 ≥ 0.99. This
can also be achieved with a slightly more complicated analysis.

(* A simplified but slower variant of a result by [Chazelle, Rubinfeld, Trevisan ‘05])

Warm-up

• Suppose 𝑊 = 1 (i.e., all edges are of weight 1). Then what do we
know about MST?

Warm-up

• Suppose 𝑊 = 1 (i.e., all edges are of weight 1). Then what do we
know about MST?

𝑀𝑆𝑇 = 𝑛 − 1

• What if 𝑊 = 2?

Warm-up

• What if 𝑊 = 2?

Let 𝐺(𝑖): the graph induced on edges of weight {1, 2, … , 𝑖} .

 𝐶(𝑖): the number of connected components in 𝐺(𝑖).

𝑀𝑆𝑇 = #weight 1 edges in MST + 2(# weight 2 edges in MST)

= #edges in MST + (# weight 2 edges in MST)

= (𝑛 − 1) + (𝐶 1 − 1)

= 𝑛 + 𝐶 1 − 2

Claim: More generally, 𝑀𝑆𝑇 = n − W + σ𝑖=1
𝑊−1 𝐶(𝑖).

MST via Connected Components

• Claim: 𝑀𝑆𝑇 = n − W + σ𝑖=1
𝑊−1 𝐶(𝑖).

Let 𝛼𝑖: # of edges of weight 𝑖 in MST. This gives 𝑀𝑆𝑇 = σ𝑗=1
𝑊 𝛼𝑖 ⋅ 𝑗.

Observe that: 𝑀𝑆𝑇 =

To see this, consider the grid:

The first sum goes over the rows, summing the columns, the second
sum goes over the columns summing the rows.

MST via Connected Components

𝑀𝑆𝑇 =

(Change of index)

(Since 𝐶(0) = 𝑛)

Implication:
To estimate MST cost, suffices to estimate # of connected components.

Estimating Connected Components

• Theorem: There is an algorithm that runs in time
𝑂 𝛿−2 and returns a value ሚ𝐶 such that

E ሚ𝐶 ∈ 𝐶 ± 𝛿𝑛.

Here 𝐶 is the number of connected components.

Remark: This is an additive approximation.

Estimating Connected Components

• For any vertex 𝑣, let 𝑆𝑣 be the size of the connected component
that 𝑣 belongs to. Note that

• So, intuitively, if we compute 𝑆𝑣 for a few random vertices we can
estimate 𝐶, but the problem is that 𝑆𝑣 can be quite large.

• Let us now define 𝑆𝑣
′ = 𝑚𝑖𝑛{𝑆𝑣 , 1/𝛿} and let 𝐶′ = σ𝑣 1/𝑆𝑣

′ .

Claim: 𝐶′ − 𝐶 ≤ 𝜖𝑛.

Proof: Follows since 0 ≤
1

𝑆𝑣
′ −

1

𝑆𝑣
≤ 𝛿.

Estimating Connected Components

• Algorithm:

• Sample a random vertex 𝑣.

• Explore the connected component of 𝑣 using BFS or DFS,
truncating after visiting 2/𝛿 vertices. Let 𝑆𝑣

′ be the
number of vertices seen in the component of 𝑣.

• Return

ሚ𝐶 ← 𝑛 ⋅
1

𝑆𝑣
′.

Runtime: Every vertex spends 𝑂 1/𝛿 time to discover an unvisited
neighbor, so the algorithm runs in total time at most 𝑂(1/𝛿2).

Estimating Connected Components

• Claim: 𝐸 ሚ𝐶 = 𝐶′.

Proof:

= 𝑛 σ𝑣 Pr 𝑣 sampled
1

𝑆𝑣
′

E ሚ𝐶 = 𝐸𝑣 𝑛 ⋅
1

𝑆𝑣
′

= 𝑛 σ𝑣
1

𝑛
⋅

1

𝑆𝑣
′

= σ𝑣
1

𝑆𝑣
′

= 𝐶′.

Putting Everything Together

We showed MST

Also, we showed:

Theorem 2: There is an algorithm that runs in time 𝑂 𝛿−2 and returns a value ሚ𝐶 such that

E ሚ𝐶 ∈ 𝐶 ± 𝛿𝑛.
Provided that the algorithm has adjacency list access to the graph.

Note: Every adjacency list query to 𝐶(𝑖) can be answered with 𝑂(𝑑) queries to the
adjacency list of the original graph.

Note 2: We set 𝛿 ←
𝜖

𝑊
. This way, our final estimate satisfies:

𝐸 ෫𝑀𝑆𝑇 ∈ 𝑛 − 𝑊 − ෍

𝑖=1

𝑊−1

𝐶 𝑖 ± 𝛿𝑛 = 𝑛 − 𝑊 − (෍

𝑖=1

𝑊−1

𝐶 𝑖) ± 𝜖𝑛

= 𝑀𝑆𝑇 ± 𝜖𝑛 ∈ 1 ± 𝜖 𝑀𝑆𝑇

Note 3: The final running time is 𝑂 𝑊 ⋅ 𝑑 ⋅ 𝛿−2 = 𝑂 𝑊3𝑑𝜖−2 .

	Slide 1
	Slide 2: Minimum Spanning Trees (MST)
	Slide 3: Query Access
	Slide 4: Minimum Spanning Trees (MST)
	Slide 5: Warm-up
	Slide 6: Warm-up
	Slide 7: Warm-up
	Slide 8: MST via Connected Components
	Slide 9: MST via Connected Components
	Slide 10: Estimating Connected Components
	Slide 11: Estimating Connected Components
	Slide 12: Estimating Connected Components
	Slide 13: Estimating Connected Components
	Slide 14: Putting Everything Together

