Sublinear Time Algorithms for MST

Minimum Spanning Trees (MST)

- In our last lecture, we saw algorithms that find an MST in O(m log n) time, which is near-linear in the input size.
- But can we do better?
- In this lecture, we will see an algorithm that runs in sublinear time, provided that we are only interested in approximating the cost of MST.

Query Access

• Adjacency List Model:

Minimum Spanning Trees (MST)

• **Theorem*:** There is an algorithm that runs in time $O(W^3 d\epsilon^{-2})$ and returns a value \widetilde{MST} such that

$E[\widetilde{MST}] \in (1 \pm \epsilon)MST.$

- *d*: the maximum degree in the graph.
- *W*: maximum edge weight.
- ϵ : any desirable parameter in (0, 1].
- **Remark:** Often mere expectation is not enough and we desire a stronger bound of the form $Pr[\widetilde{MST} \in (1 \pm \epsilon)MST] \ge 0.99$. This can also be achieved with a slightly more complicated analysis.

(* A simplified but slower variant of a result by [Chazelle, Rubinfeld, Trevisan '05])

Warm-up

Suppose W = 1 (i.e., all edges are of weight 1). Then what do we know about MST?

Warm-up

Suppose W = 1 (i.e., all edges are of weight 1). Then what do we know about MST?

$$MST = n - 1$$

• What if W = 2?

Warm-up

• What if W = 2?

Let $G^{(i)}$: the graph induced on edges of weight $\{1, 2, ..., i\}$. $C^{(i)}$: the number of connected components in $G^{(i)}$.

 $MST = (\#weight \ 1 \ edges \ in \ MST \) + 2(\# \ weight \ 2 \ edges \ in \ MST)$ $= (\#edges \ in \ MST) + (\# \ weight \ 2 \ edges \ in \ MST)$ $= (n - 1) + (C^{(1)} - 1)$ $= n + C^{(1)} - 2$

Claim: More generally, $MST = n - W + \sum_{i=1}^{W-1} C^{(i)}$.

MST via Connected Components

• Claim: $MST = n - W + \sum_{i=1}^{W-1} C^{(i)}$.

Let α_i : # of edges of weight *i* in MST. This gives $MST = \sum_{j=1}^{W} \alpha_i \cdot j$.

Observe that:
$$MST = \sum_{j=1}^{W} \alpha_j \cdot j = \sum_{i=1}^{W} \sum_{j=i}^{W} \alpha_j$$

To see this, consider the grid:

The first sum goes over the rows, summing the columns, the second sum goes over the columns summing the rows.

MST via Connected Components

$$\begin{split} MST &= \sum_{j=1}^{W} \alpha_j \cdot j = \sum_{i=1}^{W} \sum_{j=i}^{W} \alpha_j \\ &= \sum_{i=1}^{W} C^{(i-1)} - 1 \\ &= \sum_{i=0}^{W-1} C^{(i)} - 1 \\ &= n - W - \sum_{i=1}^{W-1} C^{(i)}. \end{split}$$
 (Change of index)
$$&= n - W - \sum_{i=1}^{W-1} C^{(i)}. \qquad (Since \ \mathcal{C}^{(0)} = n) \end{split}$$

Implication:

To estimate MST cost, suffices to estimate # of connected components.

• **Theorem:** There is an algorithm that runs in time $O(\delta^{-2})$ and returns a value \tilde{C} such that $E[\tilde{C}] \in C \pm \delta n$.

Here *C* is the number of connected components.

Remark: This is an *additive* approximation.

• For any vertex v, let S_v be the size of the connected component that v belongs to. Note that

$$\sum_{v \in V} \frac{1}{S_v} = C.$$

- So, intuitively, if we compute S_v for a few random vertices we can estimate C, but the problem is that S_v can be quite large.
- Let us now define $S'_{\nu} = min\{S_{\nu}, 1/\delta\}$ and let $C' = \sum_{\nu} 1/S'_{\nu}$.

Claim: $|C' - C| \leq \epsilon n$.

Proof: Follows since
$$0 \leq \frac{1}{S'_{\nu}} - \frac{1}{S_{\nu}} \leq \delta$$
.

- Algorithm:
 - Sample a random vertex v.
 - Explore the connected component of v using BFS or DFS, truncating after visiting $2/\delta$ vertices. Let S'_v be the number of vertices seen in the component of v.
 - Return

$$\tilde{C} \leftarrow n \cdot \frac{1}{S_{\nu}'}.$$

Runtime: Every vertex spends $O(1/\delta)$ time to discover an unvisited neighbor, so the algorithm runs in total time at most $O(1/\delta^2)$.

• Claim:
$$E[\tilde{C}] = C'$$
.

Proof:
$$E[\tilde{C}] = E_v \left[n \cdot \frac{1}{S'_v} \right]$$

 $= n \sum_v \Pr[v \text{ sampled}] \frac{1}{S'_v}$
 $= n \sum_v \frac{1}{n} \cdot \frac{1}{S'_v}$
 $= \sum_v \frac{1}{S'_v}$
 $= C'.$

Putting Everything Together

We showed
$$ext{MST} = n - W - \sum_{i=1}^{W-1} C^{(i)}.$$

Also, we showed:

Theorem 2: There is an algorithm that runs in time $O(\delta^{-2})$ and returns a value \tilde{C} such that $E[\tilde{C}] \in C \pm \delta n$.

Provided that the algorithm has adjacency list access to the graph.

Note: Every adjacency list query to $C^{(i)}$ can be answered with O(d) queries to the adjacency list of the original graph.

Note 2: We set $\delta \leftarrow \frac{\epsilon}{W}$. This way, our final estimate satisfies: $E[\widetilde{MST}] \in n - W - \sum_{i=1}^{W-1} (C^{(i)} \pm \delta n) = n - W - (\sum_{i=1}^{W-1} C^{(i)}) \pm \epsilon n$ $= MST \pm \epsilon n \in (1 \pm \epsilon)MST$

Note 3: The final running time is $O(W \cdot d \cdot \delta^{-2}) = O(W^3 d\epsilon^{-2})$.