Sublinear Time Algorithms for MST

Minimum Spanning Trees (MST)

* In our last lecture, we saw algorithms that find an
MST in O(mlogn) time, which is near-linear in the
Input size.

e But can we do better?

* In this lecture, we will see an algorithm that runs in
sublinear time, provided that we are only interested
in approximating the cost of MST.

Query Access

* Adjacency List Model:

Minimum Spanning Trees (MST)

Theorem™: There is an algorithm that runs in time O(W?’de_z)
and returns a value MST such that

E|MST] € (1 £ €)MST.

e d: the maximum degree in the graph.
e W: maximum edge weight.

* €: any desirable parameter in (0, 1].

Remark: Often mere expectation is not enough and we desire a
stronger bound of the form Pr|[MST € (1 + €)MST| = 0.99. This
can also be achieved with a slightly more complicated analysis.

(* A simplified but slower variant of a result by [Chazelle, Rubinfeld, Trevisan ‘05])

Warm-up

e Suppose W =1 (i.e., all edges are of weight 1). Then what do we
know about MST?

Warm-up
e Suppose W =1 (i.e., all edges are of weight 1). Then what do we
know about MST?

MST =n—1
* Whatif W = 2?

Warm-up
e Whatif W = 27

Let GO the graph induced on edges of weight {1,2, ..., i} .

C®: the number of connected components in GO,

MST = (#weight 1 edges in MST) + 2(# weight 2 edges in MST)
= (#edges in MST) + (# weight 2 edges in MST)
=(n-1)+(CY-1)
=n+CW -2

Claim: More generally, MST =n —W +Y¥71CcW®,

MST via Connected Components

e Claim: MST =n — W+ YV ;1c®,

Let a;: # of edges of weight i in MST. This gives MST = Y7, a; - j.

1% W W
Observe that: MST = Zaj-j:ZZaj

To see this, consider the grid: aw aw aw aw
a3 a3 Q3

0% 8%
a1

The first sum goes over the rows, summing the columns, the second
sum goes over the columns summing the rows.

MST via Connected Components

MST = Zaj = ZZ%

=1 7=1

w
SICEREY
=1

= Z c —1 (Change of index)
W-1
=n—W — Z C . (Since C(® = pn)
i=1

Implication:
To estimate MST cost, suffices to estimate # of connected components.

Estimating Connected Components

* Theorem: There is an algorithm that runs in time
0(67%) and returns a value C such that

E[C]| € C + on.
Here C is the number of connected components.

Remark: This is an additive approximation.

Estimating Connected Components

* Forany vertex v, let S, be the size of the connected component
that v belongs to. Note that

1
— =C.

* So, intuitively, if we compute S, for a few random vertices we can
estimate C, but the problem is that S, can be quite large.

* Let us now define S, = min{S,,1/8}andletC’ =),,1/S,.
Claim: |C' — C| < en.

1

Proof: Follows since 0 < o

_ 1<
S

Estimating Connected Components

* Algorithm:
 Sample a random vertex v.

» Explore the connected component of v using BFS or DFS,
truncating after visiting 2/6 vertices. Let S, be the
number of vertices seen in the component of v.

* Return

~ 1
C<—Tl'—,.
SU

Runtime: Every vertex spends 0(1/8) time to discover an unvisited
neighbor, so the algorithm runs in total time at most 0(1/6%).

Estimating Connected Components
- Claim: E[C] = C'.

ot 1{c) =5, [n-

=n),Pr[v sampled] 7

v

Putting Everything Together

W—1
We showed MST =n — W — Z C.
i=1

Also, we showed:

Theorem 2: There is an algorithm that runs in time 0(8~2) and returns a value C such that
E[C] € C + 6n.
Provided that the algorithm has adjacency list access to the graph.

Note: Every adjacency list query to C(can be answered with 0(d) queries to the
adjacency list of the original graph.

Note 2: We set § « Vlif This way, our final estimate satisfies:
w-1 w-1

E[MST| en—W — z (CD+6n)=n—-w - (Z CD) +en
=MST+ene (1+ e)MST

Note 3: The final running timeis O(W - d - §72) = 0(W3de™?).

	Slide 1
	Slide 2: Minimum Spanning Trees (MST)
	Slide 3: Query Access
	Slide 4: Minimum Spanning Trees (MST)
	Slide 5: Warm-up
	Slide 6: Warm-up
	Slide 7: Warm-up
	Slide 8: MST via Connected Components
	Slide 9: MST via Connected Components
	Slide 10: Estimating Connected Components
	Slide 11: Estimating Connected Components
	Slide 12: Estimating Connected Components
	Slide 13: Estimating Connected Components
	Slide 14: Putting Everything Together

