
Dynamic Programming

Fibonacci Numbers

• 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, …

• 𝐹 𝑛 = 𝐹 𝑛 − 1 + 𝐹 𝑛 − 2

• Solving the recurrence recursively takes 𝛺(1.62𝑛) time
• Problem: Recompute the same values 𝐹 𝑖 many times

• Two ways to improve the running time
• Remember values you’ve already computed (“top down”)
• Iterate over all values 𝐹 𝑖 (“bottom up”)

• Fact: Fastest algorithms solve in logarithmic time

Weighted Interval Scheduling

• How can we optimally schedule a resource?
• This classroom, a computing cluster, …

• Input: 𝑛 intervals 𝑠𝑖 , 𝑓𝑖 each with value 𝑣𝑖

• Assume intervals are sorted so 𝑓1 < 𝑓2 < ⋯ < 𝑓𝑛

• Output: a compatible schedule 𝑆 maximizing the
total value of all intervals
• A schedule is a subset of intervals 𝑆 ⊆ {1, … , 𝑛}

• A schedule 𝑆 is compatible if no 𝑖, 𝑗 ∈ 𝑆 overlap

• The total value of 𝑆 is σ𝑖∈𝑆 𝑣𝑖

Interval Scheduling

A Recursive Formulation

• Let 𝑂 be the optimal schedule

• Case 1: Final interval is not in 𝑂 (i.e. 6 ∉ 𝑂)
• Then 𝑂 must be the optimal solution for 1, … , 5

A Recursive Formulation

• Let 𝑂 be the optimal schedule

• Case 2: Final interval is in 𝑂 (i.e. 6 ∈ 𝑂)
• Then 𝑂 must be {6} + the optimal solution for 1, … , 3

A Recursive Formulation

Which is better?
• the optimal solution for 1, … , 5

• {6} + the optimal solution for 1, … , 3

A Recursive Formulation: Subproblems

• Subproblems: Let 𝑂𝑖 be the optimal schedule using
only the intervals 1, … , 𝑖

• Case 1: Final interval is not in 𝑂𝑖 (𝑖 ∉ 𝑂𝑖)
• Then 𝑂𝑖 must be the optimal solution for 1, … , 𝑖 − 1

• 𝑂𝑖 = 𝑂𝑖−1

• Case 2: Final interval is in 𝑂𝑖 (𝑖 ∈ 𝑂𝑖)
• Assume intervals are sorted so that 𝑓1 < 𝑓2 < ⋯ < 𝑓𝑛

• Let 𝑝 𝑖 be the largest 𝑗 such that 𝑓𝑗 < 𝑠𝑖

• Then 𝑂𝑖 must be 𝑖 + the optimal solution for 1, … , 𝑝 𝑖

• 𝑂𝑖 = 𝑖 + 𝑂𝑝(𝑖)

A Recursive Formulation: Subproblems &
Recurrence

• Subproblems: Let 𝑂𝑃𝑇(𝑖) be the value of the optimal schedule using only
the intervals 1, … , 𝑖 (𝑂𝑃𝑇 𝑖 = 𝑣𝑎𝑙𝑢𝑒(𝑂𝑖))

• Case 1: Final interval is not in 𝑂𝑖 (𝑖 ∉ 𝑂𝑖)
• Then 𝑂𝑖 must be the optimal solution for 1, … , 𝑖 − 1

• Case 2: Final interval is in 𝑂𝑖 (𝑖 ∈ 𝑂𝑖)
• Assume intervals are sorted so that 𝑓1 < 𝑓2 < ⋯ < 𝑓𝑛

• Let 𝑝 𝑖 be the largest 𝑗 such that 𝑓𝑗 < 𝑠𝑖

• Then 𝑂𝑖 must be 𝑖 + the optimal solution for 1, … , 𝑝 𝑖

• 𝑂𝑃𝑇 𝑖 = max 𝑂𝑃𝑇 𝑖 − 1 , 𝑣𝑖 + 𝑂𝑃𝑇 𝑝 𝑖

• 𝑂𝑃𝑇 0 = 0, 𝑂𝑃𝑇 1 = 𝑣1

Interval Scheduling: Straight Recursion

• What is the worst-case running time of
FindOPT(n)(how many recursive calls)?

// All inputs are global vars

FindOPT(n):

 if (n = 0): return 0

 elseif (n = 1): return v1
 else:

 return max{FindOPT(n-1), vn + FindOPT(p(n))}

Interval Scheduling: Top Down

• What is the running time of FindOPT(n)?

// All inputs are global vars

M ← empty array, M[0] ← 0, M[1] ← v1
FindOPT(n):

 if (M[n] is not empty): return M[n]

 else:

 M[n] ← max{FindOPT(n-1), vn + FindOPT(p(n))}

 return M[n]

Interval Scheduling: Bottom Up

• What is the running time of FindOPT(n)?

// All inputs are global vars

FindOPT(n):

 M[0] ← 0, M[1] ← v1
 for (i = 2,…,n):

 M[i] ← max{M[i-1], vi + M[p(i)]}

 return M[n]

Finding the Optimal Solution

• What is the running time of FindSched(n)?

// All inputs are global vars

FindSched(M,n):

 if (n = 0): return ∅
 elseif (n = 1): return {1}

 elseif (vn + M[p(n)] > M[n-1]):

 return {n} + FindSched(M,p(n))

 else:

 return FindSched(M,n-1)

Now You Try

𝑣1 = 2

𝑣3 = 6

𝑣2 = 1

𝑣5 = 9

𝑣4 = 5

𝑣6 = 2

1

2

3

4

5

6

𝑝 1 = 0

𝑝 2 = 1

𝑝 3 = 0

𝑝 4 = 2

𝑝 5 = 1

𝑝 6 = 4

M[0] M[1] M[2] M[3] M[4] M[5] M[6]

Edit Distance

Distance Between Strings

• Autocorrect works by finding similar strings

• ocurrance and occurrence seem similar, but
only if we define similarity carefully

ocurrance

occurrence

oc urrance

occurrence

Edit Distance / Alignments

• Given two strings 𝑥 ∈ Σ𝑛, 𝑦 ∈ Σ𝑚, the edit distance
is the number of insertions, deletions, and swaps
required to turn 𝑥 into 𝑦.

• Given an alignment, the cost is the number of
positions where the two strings don’t agree

o c u r r a n c e

o c c u r r e n c e

Edit Distance / Alignments

• Input: Two strings 𝑥 ∈ Σ𝑛, 𝑦 ∈ Σ𝑚

• Output: The minimum cost alignment of 𝑥 and 𝑦
• Edit Distance = cost of the minimum cost alignment

Dynamic Programming

• Consider the optimal alignment of 𝑥, 𝑦

• Three choices for the final column
• Case I: only use 𝑥 (𝑥𝑛, −)

• Case II: only use 𝑦 (−, 𝑦𝑚)

• Case III: use one symbol from each (𝑥𝑛, 𝑦𝑚)

Dynamic Programming

• Consider the optimal alignment of 𝑥, 𝑦

• Case I: only use 𝑥 (𝑥𝑛, −)
• deletion + optimal alignment of 𝑥1:𝑛−1, 𝑦1:𝑚

• Case II: only use 𝑦 (−, 𝑦𝑚)
• insertion + optimal alignment of 𝑥1:𝑛, 𝑦1:𝑚−1

• Case III: use one symbol from each (𝑥𝑛, 𝑦𝑚)
• If 𝑥𝑛 = 𝑦𝑚: optimal alignment of 𝑥1:𝑛−1, 𝑦1:𝑚−1

• If 𝑥𝑛 ≠ 𝑦𝑚: mismatch + opt. alignment of 𝑥1:𝑛−1, 𝑦1:𝑚−1

Dynamic Programming

• 𝐎𝐏𝐓 𝒊, 𝒋 = cost of opt. alignment of 𝑥1:𝑖 and 𝑦1:𝑗

• Case I: only use 𝑥 (𝑥𝑖 , −)

• Case II: only use 𝑦 (−, 𝑦𝑗)

• Case III: use one symbol from each (𝑥𝑖 , 𝑦𝑗)

Dynamic Programming

• 𝐎𝐏𝐓 𝒊, 𝒋 = cost of opt. alignment of 𝑥1:𝑖 and 𝑦1:𝑗

• Case I: only use 𝑥 (𝑥𝑖 , −)

• Case II: only use 𝑦 (−, 𝑦𝑗)

• Case III: use one symbol from each (𝑥𝑖 , 𝑦𝑗)

Recurrence:

OPT 𝑖, 𝑗 = ቊ
1 + min OPT 𝑖 − 1, 𝑗 , OPT 𝑖, 𝑗 − 1 , OPT(𝑖 − 1, 𝑗 − 1)

min{1 + 𝑂𝑃𝑇 𝑖 − 1, 𝑗 , 1 + OPT 𝑖, 𝑗 − 1 , OPT(𝑖 − 1, 𝑗 − 1)}

Base Cases:

OPT 𝑖, 0 = 𝑖, OPT 0, 𝑗 = 𝑗

Edit Distance (“Bottom-Up”)

// All inputs are global vars

FindOPT(n,m):

 M[0,j] ← j, M[i,0] ← i

 for (i= 1,…,n):

 for (j = 1,…,m):

 if (xi = yj):

 M[i,j] = min{1+M[i-1,j],1+M[i,j-1],M[i-1,j-1]

 elseif (xi != yj):

 M[i,j] = 1+min{M[i-1,j],M[i,j-1],M[i-1,j-1]}

 return M[n,m]

Summary

• Can compute EDIT in time 𝑂 𝑛𝑚
• If both strings have length ≤ 𝑛 this is 𝑂 𝑛2 time

• Same algorithm works for any set of costs you choose
for swaps, insertions, and deletions

• Dynamic Programming:
• Question: Which of the two final symbols are in the

optimal alignment?

• Subproblems: EDIT between each pair of prefixes

Big Open Problem: Can we solve EDIT in 𝑛2−Ω(1) time?

CS3000: Algorithms & Data

Unit 3: Dynamic Programming
a. Fibonacci Numbers

b. First Problem: Weighted Interval Scheduling

c. Knapsacks

d. Edit Distance

e. Longest Increasing Subsequence

Longest Increasing Subsequence (LIS)

• Input: a sequence of numbers 𝑥1, … , 𝑥𝑛

4 0 8 2 9 3 1 2 3 7 4 6 3

sequence

Longest Increasing Subsequence (LIS)

• Input: a sequence of numbers 𝑥1, … , 𝑥𝑛

• Increasing Subsequence:
indices 1 ≤ 𝑖1 ≤ 𝑖2 ≤ ⋯ ≤ 𝑖𝑘 ≤ 𝑛
such that 𝑥𝑖1

< 𝑥𝑖2
< ⋯ < 𝑥𝑖𝑘

4 0 8 2 9 3 1 2 3 7 4 6 3

sequence

increasing subsequence

Longest Increasing Subsequence (LIS)

• Input: a sequence of numbers 𝑥1, … , 𝑥𝑛

• Output: a longest increasing subsequence

4 0 8 2 9 3 1 2 3 7 4 6 3

4 0 8 2 9 3 1 2 3 7 4 6 3

sequence

increasing subsequence

sequence

longest increasing subsequence

Ask the Audience

• Find a longest increasing subsequence of

14 7 5 6 2 12

Writing the Recurrence

• Let LIS 𝑗 be the length of the longest increasing
subsequence of 𝑥1, … , 𝑥𝑗

• Case 𝒊: the last element of the sequence is 𝑥𝑖

6 10 14 5 12 8

Writing the Recurrence: Take II

• Let LIS 𝑗 be the length of the longest increasing
subsequence that ends with 𝑥𝑗

• Case 𝒊: the last two numbers are 𝑥𝑖 and 𝑥𝑗

6 10 14 5 12 8

Writing the Recurrence

• Let LIS 𝑗 be the length of the longest increasing
subsequence that ends with 𝑥𝑗

• Note LIS 𝑛 is not necessarily the length of the LIS

• Need to know LIS = max
𝑗=1…𝑛

LIS 𝑗

• Case 𝒊: the last two numbers are 𝑥𝑖 and 𝑥𝑗

Writing the Recurrence

• Let LIS 𝑗 be the length of the longest increasing
subsequence that ends with 𝑥𝑗

• Note LIS 𝑛 is not necessarily the length of the LIS

• Need to know LIS = max
𝑗=1…𝑛

LIS 𝑗

• Case 𝒊: the last two numbers are 𝑥𝑖 and 𝑥𝑗

Recurrence:

Base Case:

LIS 𝑗 = 1 + max
1≤𝑖<𝑗 and 𝑥𝑖<𝑥𝑗

LIS 𝑖

LIS 1 = 1

Practice

• Fill out the values LIS 𝑗 for 𝑗 = 1, … , 6

6 10 5 14 8 7

j 1 2 3 4 5 6

LIS(j) 1

Practice

• Fill out the values LIS 𝑗 for 𝑗 = 1, … , 6

6 10 5 14 8 7

j 1 2 3 4 5 6

LIS(j) 1 2 1 3 2 2

Solving the Recurrence: Bottom-Up

// All inputs are global vars

FindOPT(n):

 M[1] ← 1

 for (j = 2,…,n):

 M j = 1 + max
1≤i<j and xi<xj

M[i]

 return max
1≤𝑗≤𝑛

M[j]

Recovering the LIS (Final Symbol)

• Let LIS 𝑗 be the length of the longest increasing
subsequence that ends with 𝑥𝑗

Recurrence:

Base Case:

LIS 𝑗 = 1 + max
1≤𝑖<𝑗 and 𝑥𝑖<𝑥𝑗

LIS 𝑖

LIS 1 = 1

LIS = max
1≤𝑗≤𝑛

LIS 𝑗

Length of LIS

Recovering the LIS (Other Symbols)

• Let LIS 𝑗 be the length of the longest increasing
subsequence that ends with 𝑥𝑗

Recurrence:

Base Case:

LIS 𝑗 = 1 + max
1≤𝑖<𝑗 and 𝑥𝑖<𝑥𝑗

LIS 𝑖

LIS 1 = 1

LIS = max
1≤𝑗≤𝑛

LIS 𝑗

Length of LIS

Recovering the LIS

• Fill out the values LIS 𝑗 for 𝑗 = 1, … , 6

6 10 5 14 8 7

j 1 2 3 4 5 6

LIS(j) 1 2 1 3 2 2

Summary

• Can compute a LIS in time 𝑂 𝑛2

• Same algorithm works for longest non-decreasing,
longest decreasing, longest non-increasing, and more

• Dynamic Programming:
• Question: What is the final symbol in the LIS?

• Subproblems represent LIS with a specific final symbol

• The actual optimal value is not always in LIS(n)

	Slide 1
	Slide 2: Fibonacci Numbers
	Slide 3: Weighted Interval Scheduling
	Slide 4: Interval Scheduling
	Slide 5: A Recursive Formulation
	Slide 6: A Recursive Formulation
	Slide 7: A Recursive Formulation
	Slide 8: A Recursive Formulation: Subproblems
	Slide 9: A Recursive Formulation: Subproblems & Recurrence
	Slide 10: Interval Scheduling: Straight Recursion
	Slide 11: Interval Scheduling: Top Down
	Slide 12: Interval Scheduling: Bottom Up
	Slide 13: Finding the Optimal Solution
	Slide 14: Now You Try
	Slide 15
	Slide 16: Distance Between Strings
	Slide 17: Edit Distance / Alignments
	Slide 18: Edit Distance / Alignments
	Slide 19: Dynamic Programming
	Slide 20: Dynamic Programming
	Slide 21: Dynamic Programming
	Slide 22: Dynamic Programming
	Slide 23: Edit Distance (“Bottom-Up”)
	Slide 24: Summary
	Slide 25: CS3000: Algorithms & Data
	Slide 26: Longest Increasing Subsequence (LIS)
	Slide 27: Longest Increasing Subsequence (LIS)
	Slide 28: Longest Increasing Subsequence (LIS)
	Slide 29: Ask the Audience
	Slide 30: Writing the Recurrence
	Slide 31: Writing the Recurrence: Take II
	Slide 32: Writing the Recurrence
	Slide 33: Writing the Recurrence
	Slide 34: Practice
	Slide 35: Practice
	Slide 36: Solving the Recurrence: Bottom-Up
	Slide 37: Recovering the LIS (Final Symbol)
	Slide 38: Recovering the LIS (Other Symbols)
	Slide 39: Recovering the LIS
	Slide 40: Summary

