
Dynamic Programming



Fibonacci Numbers

• 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, …

• 𝐹 𝑛 = 𝐹 𝑛 − 1 + 𝐹 𝑛 − 2

• Solving the recurrence recursively takes 𝛺(1.62𝑛) time
• Problem: Recompute the same values 𝐹 𝑖 many times

• Two ways to improve the running time
• Remember values you’ve already computed (“top down”)
• Iterate over all values 𝐹 𝑖 (“bottom up”)

• Fact: Fastest algorithms solve in logarithmic time



Weighted Interval Scheduling

• How can we optimally schedule a resource?
• This classroom, a computing cluster, …

• Input: 𝑛 intervals 𝑠𝑖 , 𝑓𝑖 each with value 𝑣𝑖

• Assume intervals are sorted so 𝑓1 < 𝑓2 < ⋯ < 𝑓𝑛

• Output: a compatible schedule 𝑆 maximizing the 
total value of all intervals
• A schedule is a subset of intervals 𝑆 ⊆ {1, … , 𝑛}

• A schedule 𝑆 is compatible if no 𝑖, 𝑗 ∈ 𝑆 overlap

• The total value of 𝑆 is σ𝑖∈𝑆 𝑣𝑖



Interval Scheduling



A Recursive Formulation

• Let 𝑂 be the optimal schedule

• Case 1: Final interval is not in 𝑂 (i.e. 6 ∉ 𝑂)
• Then 𝑂 must be the optimal solution for 1, … , 5



A Recursive Formulation

• Let 𝑂 be the optimal schedule

• Case 2: Final interval is in 𝑂 (i.e. 6 ∈ 𝑂)
• Then 𝑂 must be {6} + the optimal solution for 1, … , 3



A Recursive Formulation

Which is better?
• the optimal solution for 1, … , 5

• {6} + the optimal solution for 1, … , 3



A Recursive Formulation: Subproblems

• Subproblems: Let 𝑂𝑖 be the optimal schedule using 
only the intervals 1, … , 𝑖

• Case 1: Final interval is not in 𝑂𝑖 (𝑖 ∉ 𝑂𝑖)
• Then 𝑂𝑖 must be the optimal solution for 1, … , 𝑖 − 1

• 𝑂𝑖 = 𝑂𝑖−1

• Case 2: Final interval is in 𝑂𝑖 (𝑖 ∈ 𝑂𝑖)
• Assume intervals are sorted so that 𝑓1 < 𝑓2 < ⋯ < 𝑓𝑛

• Let 𝑝 𝑖 be the largest 𝑗 such that 𝑓𝑗 < 𝑠𝑖

• Then 𝑂𝑖 must be 𝑖 + the optimal solution for 1, … , 𝑝 𝑖

• 𝑂𝑖 = 𝑖 + 𝑂𝑝(𝑖)



A Recursive Formulation: Subproblems & 
Recurrence

• Subproblems: Let 𝑂𝑃𝑇(𝑖) be the value of the optimal schedule using only 
the intervals 1, … , 𝑖 (𝑂𝑃𝑇 𝑖 = 𝑣𝑎𝑙𝑢𝑒(𝑂𝑖))

• Case 1: Final interval is not in 𝑂𝑖 (𝑖 ∉ 𝑂𝑖)
• Then 𝑂𝑖 must be the optimal solution for 1, … , 𝑖 − 1

• Case 2: Final interval is in 𝑂𝑖 (𝑖 ∈ 𝑂𝑖)
• Assume intervals are sorted so that 𝑓1 < 𝑓2 < ⋯ < 𝑓𝑛

• Let 𝑝 𝑖 be the largest 𝑗 such that 𝑓𝑗 < 𝑠𝑖

• Then 𝑂𝑖 must be 𝑖 + the optimal solution for 1, … , 𝑝 𝑖

• 𝑂𝑃𝑇 𝑖 = max 𝑂𝑃𝑇 𝑖 − 1 , 𝑣𝑖 + 𝑂𝑃𝑇 𝑝 𝑖

• 𝑂𝑃𝑇 0 = 0, 𝑂𝑃𝑇 1 = 𝑣1



Interval Scheduling: Straight Recursion

• What is the worst-case running time of 
FindOPT(n)(how many recursive calls)?

// All inputs are global vars

FindOPT(n):

 if (n = 0): return 0

 elseif (n = 1): return v1
 else:

  return max{FindOPT(n-1), vn + FindOPT(p(n))}



Interval Scheduling: Top Down

• What is the running time of FindOPT(n)?

// All inputs are global vars

M ← empty array, M[0] ← 0, M[1] ← v1 
FindOPT(n):

 if (M[n] is not empty): return M[n]

 else:

  M[n] ← max{FindOPT(n-1), vn + FindOPT(p(n))}

  return M[n]



Interval Scheduling: Bottom Up

• What is the running time of FindOPT(n)?

// All inputs are global vars

FindOPT(n):

 M[0] ← 0, M[1] ← v1
 for (i = 2,…,n):

  M[i] ← max{M[i-1], vi + M[p(i)]}

 return M[n]



Finding the Optimal Solution

• What is the running time of FindSched(n)?

// All inputs are global vars

FindSched(M,n):

 if (n = 0): return ∅
 elseif (n = 1): return {1}

 elseif (vn + M[p(n)] > M[n-1]):

  return {n} + FindSched(M,p(n))

 else:

  return FindSched(M,n-1)



Now You Try

𝑣1 = 2

𝑣3 = 6

𝑣2 = 1

𝑣5 = 9

𝑣4 = 5

𝑣6 = 2

1

2

3

4

5

6

𝑝 1 = 0

𝑝 2 = 1

𝑝 3 = 0

𝑝 4 = 2

𝑝 5 = 1

𝑝 6 = 4

M[0] M[1] M[2] M[3] M[4] M[5] M[6]



Edit Distance



Distance Between Strings

• Autocorrect works by finding similar strings

• ocurrance and occurrence seem similar, but 
only if we define similarity carefully

ocurrance

occurrence

oc urrance

occurrence



Edit Distance / Alignments

• Given two strings 𝑥 ∈ Σ𝑛, 𝑦 ∈ Σ𝑚, the edit distance 
is the number of insertions, deletions, and swaps 
required to turn 𝑥 into 𝑦.

• Given an alignment, the cost is the number of 
positions where the two strings don’t agree

o c u r r a n c e

o c c u r r e n c e



Edit Distance / Alignments

• Input: Two strings 𝑥 ∈ Σ𝑛, 𝑦 ∈ Σ𝑚

• Output: The minimum cost alignment of 𝑥 and 𝑦
• Edit Distance = cost of the minimum cost alignment



Dynamic Programming

• Consider the optimal alignment of 𝑥, 𝑦

• Three choices for the final column
• Case I: only use 𝑥 ( 𝑥𝑛, − )

• Case II: only use 𝑦 ( −, 𝑦𝑚 )

• Case III: use one symbol from each ( 𝑥𝑛, 𝑦𝑚 )



Dynamic Programming

• Consider the optimal alignment of 𝑥, 𝑦

• Case I: only use 𝑥 ( 𝑥𝑛, − )
• deletion + optimal alignment of 𝑥1:𝑛−1, 𝑦1:𝑚

• Case II: only use 𝑦 ( −, 𝑦𝑚 )
• insertion + optimal alignment of 𝑥1:𝑛, 𝑦1:𝑚−1

• Case III: use one symbol from each ( 𝑥𝑛, 𝑦𝑚 )
• If 𝑥𝑛 = 𝑦𝑚: optimal alignment of 𝑥1:𝑛−1, 𝑦1:𝑚−1

• If 𝑥𝑛 ≠ 𝑦𝑚: mismatch + opt. alignment of 𝑥1:𝑛−1, 𝑦1:𝑚−1



Dynamic Programming

• 𝐎𝐏𝐓 𝒊, 𝒋  = cost of opt. alignment of 𝑥1:𝑖  and 𝑦1:𝑗

• Case I: only use 𝑥 ( 𝑥𝑖 , − )

• Case II: only use 𝑦 ( −, 𝑦𝑗  )

• Case III: use one symbol from each ( 𝑥𝑖 , 𝑦𝑗  )



Dynamic Programming

• 𝐎𝐏𝐓 𝒊, 𝒋  = cost of opt. alignment of 𝑥1:𝑖  and 𝑦1:𝑗

• Case I: only use 𝑥 ( 𝑥𝑖 , − )

• Case II: only use 𝑦 ( −, 𝑦𝑗  )

• Case III: use one symbol from each ( 𝑥𝑖 , 𝑦𝑗  )

Recurrence:

OPT 𝑖, 𝑗 = ቊ
1 + min OPT 𝑖 − 1, 𝑗 , OPT 𝑖, 𝑗 − 1 , OPT(𝑖 − 1, 𝑗 − 1) 

min{1 + 𝑂𝑃𝑇 𝑖 − 1, 𝑗 , 1 + OPT 𝑖, 𝑗 − 1 , OPT(𝑖 − 1, 𝑗 − 1)} 

Base Cases:

OPT 𝑖, 0 = 𝑖, OPT 0, 𝑗 = 𝑗



Edit Distance (“Bottom-Up”)

// All inputs are global vars

FindOPT(n,m):

 M[0,j] ← j, M[i,0] ← i
 

 for (i= 1,…,n):

  for (j = 1,…,m):

   if (xi = yj):

    M[i,j] = min{1+M[i-1,j],1+M[i,j-1],M[i-1,j-1]

   elseif (xi != yj):

    M[i,j] = 1+min{M[i-1,j],M[i,j-1],M[i-1,j-1]}

 

 return M[n,m]



Summary

• Can compute EDIT in time 𝑂 𝑛𝑚
• If both strings have length ≤ 𝑛 this is 𝑂 𝑛2  time

• Same algorithm works for any set of costs you choose 
for swaps, insertions, and deletions

• Dynamic Programming:
• Question: Which of the two final symbols are in the 

optimal alignment?

• Subproblems: EDIT between each pair of prefixes

Big Open Problem: Can we solve EDIT in 𝑛2−Ω(1) time?



CS3000: Algorithms & Data

Unit 3: Dynamic Programming
a. Fibonacci Numbers

b. First Problem: Weighted Interval Scheduling

c. Knapsacks

d. Edit Distance

e. Longest Increasing Subsequence



Longest Increasing Subsequence (LIS)

• Input: a sequence of numbers 𝑥1, … , 𝑥𝑛

4 0 8 2 9 3 1 2 3 7 4 6 3

sequence



Longest Increasing Subsequence (LIS)

• Input: a sequence of numbers 𝑥1, … , 𝑥𝑛

• Increasing Subsequence:                                                        
indices 1 ≤ 𝑖1 ≤ 𝑖2 ≤ ⋯ ≤ 𝑖𝑘 ≤ 𝑛                                      
such that 𝑥𝑖1

< 𝑥𝑖2
< ⋯ < 𝑥𝑖𝑘

4 0 8 2 9 3 1 2 3 7 4 6 3

sequence

increasing subsequence



Longest Increasing Subsequence (LIS)

• Input: a sequence of numbers 𝑥1, … , 𝑥𝑛

• Output: a longest increasing subsequence

4 0 8 2 9 3 1 2 3 7 4 6 3

4 0 8 2 9 3 1 2 3 7 4 6 3

sequence

increasing subsequence

sequence

longest increasing subsequence



Ask the Audience

• Find a longest increasing subsequence of 

14 7 5 6 2 12



Writing the Recurrence

• Let LIS 𝑗  be the length of the longest increasing 
subsequence of 𝑥1, … , 𝑥𝑗

• Case 𝒊: the last element of the sequence is 𝑥𝑖

6 10 14 5 12 8



Writing the Recurrence: Take II

• Let LIS 𝑗  be the length of the longest increasing 
subsequence that ends with 𝑥𝑗

• Case 𝒊: the last two numbers are 𝑥𝑖  and 𝑥𝑗

6 10 14 5 12 8



Writing the Recurrence

• Let LIS 𝑗  be the length of the longest increasing 
subsequence that ends with 𝑥𝑗

• Note LIS 𝑛  is not necessarily the length of the LIS

• Need to know LIS =  max
𝑗=1…𝑛

LIS 𝑗

• Case 𝒊: the last two numbers are 𝑥𝑖  and 𝑥𝑗



Writing the Recurrence

• Let LIS 𝑗  be the length of the longest increasing 
subsequence that ends with 𝑥𝑗

• Note LIS 𝑛  is not necessarily the length of the LIS

• Need to know LIS =  max
𝑗=1…𝑛

LIS 𝑗

• Case 𝒊: the last two numbers are 𝑥𝑖  and 𝑥𝑗

Recurrence:

Base Case:

LIS 𝑗 = 1 + max
1≤𝑖<𝑗 and 𝑥𝑖<𝑥𝑗

LIS 𝑖

LIS 1 = 1



Practice

• Fill out the values LIS 𝑗  for 𝑗 = 1, … , 6 

6 10 5 14 8 7

j 1 2 3 4 5 6

LIS(j) 1



Practice

• Fill out the values LIS 𝑗  for 𝑗 = 1, … , 6 

6 10 5 14 8 7

j 1 2 3 4 5 6

LIS(j) 1 2 1 3 2 2



Solving the Recurrence: Bottom-Up

// All inputs are global vars

FindOPT(n):

 M[1] ← 1
 

 for (j = 2,…,n):

  M j =  1 + max
1≤i<j and xi<xj

M[i]

 

 return max
1≤𝑗≤𝑛

M[j]



Recovering the LIS (Final Symbol)

• Let LIS 𝑗  be the length of the longest increasing 
subsequence that ends with 𝑥𝑗

Recurrence:

Base Case:

LIS 𝑗 = 1 + max
1≤𝑖<𝑗 and 𝑥𝑖<𝑥𝑗

LIS 𝑖

LIS 1 = 1

LIS = max
1≤𝑗≤𝑛 

LIS 𝑗

Length of LIS



Recovering the LIS (Other Symbols)

• Let LIS 𝑗  be the length of the longest increasing 
subsequence that ends with 𝑥𝑗

Recurrence:

Base Case:

LIS 𝑗 = 1 + max
1≤𝑖<𝑗 and 𝑥𝑖<𝑥𝑗

LIS 𝑖

LIS 1 = 1

LIS = max
1≤𝑗≤𝑛 

LIS 𝑗

Length of LIS



Recovering the LIS

• Fill out the values LIS 𝑗  for 𝑗 = 1, … , 6 

6 10 5 14 8 7

j 1 2 3 4 5 6

LIS(j) 1 2 1 3 2 2



Summary

• Can compute a LIS in time 𝑂 𝑛2

• Same algorithm works for longest non-decreasing, 
longest decreasing, longest non-increasing, and more

• Dynamic Programming:
• Question: What is the final symbol in the LIS?

• Subproblems represent LIS with a specific final symbol

• The actual optimal value is not always in LIS(n)
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