Fibonacci Numbers

- 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ...
- F(n) = F(n-1) + F(n-2)

- Solving the recurrence recursively takes $\Omega(1.62^n)$ time
 - Problem: Recompute the same values F(i) many times
- Two ways to improve the running time
 - Remember values you've already computed ("top down")
 - Iterate over all values F(i) ("bottom up")
- Fact: Fastest algorithms solve in logarithmic time

Weighted Interval Scheduling

- How can we optimally schedule a resource?
 - This classroom, a computing cluster, ...
- Input: *n* intervals (s_i, f_i) each with value v_i
 - Assume intervals are sorted so $f_1 < f_2 < \cdots < f_n$
- Output: a compatible schedule S maximizing the total value of all intervals
 - A schedule is a subset of intervals $S \subseteq \{1, ..., n\}$
 - A schedule S is compatible if no $i, j \in S$ overlap
 - The **total value** of *S* is $\sum_{i \in S} v_i$

Interval Scheduling

A Recursive Formulation

- Let O be the **optimal** schedule
- Case 1: Final interval is not in O (i.e. $6 \notin O$)
 - Then *O* must be the optimal solution for {1, ..., 5}

A Recursive Formulation

- Let *O* be the **optimal** schedule
- Case 2: Final interval is in O (i.e. $6 \in O$)
 - Then *O* must be {6} + the optimal solution for {1, ..., 3}

A Recursive Formulation

Which is better?

- the optimal solution for {1, ..., 5}
- $\{6\}$ + the optimal solution for $\{1, \dots, 3\}$

A Recursive Formulation: Subproblems

- Subproblems: Let O_i be the optimal schedule using only the intervals $\{1, \dots, i\}$
- Case 1: Final interval is not in O_i ($i \notin O_i$)
 - Then O_i must be the optimal solution for $\{1, ..., i-1\}$

•
$$O_i = O_{i-1}$$

- Case 2: Final interval is in O_i ($i \in O_i$)
 - Assume intervals are sorted so that $f_1 < f_2 < \cdots < f_n$
 - Let p(i) be the largest j such that $f_j < s_i$
 - Then O_i must be i + the optimal solution for $\{1, ..., p(i)\}$

•
$$O_i = \{i\} + O_{p(i)}$$

A Recursive Formulation: Subproblems & Recurrence

- Subproblems: Let OPT(i) be the value of the optimal schedule using only the intervals $\{1, ..., i\}$ $(OPT(i) = value(O_i))$
- Case 1: Final interval is not in O_i $(i \notin O_i)$
 - Then O_i must be the optimal solution for $\{1, ..., i 1\}$
- Case 2: Final interval is in O_i $(i \in O_i)$
 - Assume intervals are sorted so that $f_1 < f_2 < \cdots < f_n$
 - Let p(i) be the largest j such that $f_j < s_i$
 - Then O_i must be i + the optimal solution for $\{1, ..., p(i)\}$
- $OPT(i) = \max\{OPT(i-1), v_i + OPT(p(i))\}$
- $OPT(0) = 0, OPT(1) = v_1$

Interval Scheduling: Straight Recursion

```
// All inputs are global vars
FindOPT(n):
    if (n = 0): return 0
    elseif (n = 1): return v<sub>1</sub>
    else:
        return max{FindOPT(n-1), v<sub>n</sub> + FindOPT(p(n))}
```

 What is the worst-case running time of FindOPT (n) (how many recursive calls)?

Interval Scheduling: Top Down

```
// All inputs are global vars

M \leftarrow empty array, M[0] \leftarrow 0, M[1] \leftarrow v_1

FindOPT(n):

if (M[n] is not empty): return M[n]

else:

M[n] \leftarrow max{FindOPT(n-1), v_n + FindOPT(p(n))}

return M[n]
```

• What is the running time of **FindOPT(n)**?

Interval Scheduling: Bottom Up

```
// All inputs are global vars

FindOPT(n):

M[0] \leftarrow 0, M[1] \leftarrow v_1

for (i = 2,...,n):

M[i] \leftarrow max\{M[i-1], v_i + M[p(i)]\}

return M[n]
```

• What is the running time of **FindOPT(n)**?

Finding the Optimal Solution

```
// All inputs are global vars
FindSched(M,n):
    if (n = 0): return Ø
    elseif (n = 1): return {1}
    elseif (v<sub>n</sub> + M[p(n)] > M[n-1]):
        return {n} + FindSched(M,p(n))
    else:
        return FindSched(M,n-1)
```

• What is the running time of **FindSched(n)**?

Now You Try

M[0]	M[1]	M[2]	M[3]	M[4]	M[5]	M[6]

Edit Distance

Distance Between Strings

Autocorrect works by finding similar strings

 ocurrance and occurrence seem similar, but only if we define similarity carefully

ocurranceocurranceoccurrenceoccurrence

Edit Distance / Alignments

- Given two strings $x \in \Sigma^n$, $y \in \Sigma^m$, the **edit distance** is the number of insertions, deletions, and swaps required to turn x into y.
- Given an alignment, the cost is the number of positions where the two strings don't agree

Edit Distance / Alignments

- Input: Two strings $x \in \Sigma^n$, $y \in \Sigma^m$
- Output: The minimum cost alignment of x and y
 - Edit Distance = cost of the minimum cost alignment

- Consider the **optimal** alignment of *x*, *y*
- Three choices for the final column
 - Case I: only use x (x_n ,)
 - Case II: only use $y(-, y_m)$
 - Case III: use one symbol from each (x_n , y_m)

- Consider the **optimal** alignment of *x*, *y*
- Case I: only use x (x_n ,)
 - deletion + optimal alignment of $x_{1:n-1}$, $y_{1:m}$
- Case II: only use $y(-, y_m)$
 - insertion + optimal alignment of $x_{1:n}$, $y_{1:m-1}$
- Case III: use one symbol from each (x_n, y_m)
 - If $x_n = y_m$: optimal alignment of $x_{1:n-1}$, $y_{1:m-1}$
 - If $x_n \neq y_m$: mismatch + opt. alignment of $x_{1:n-1}$, $y_{1:m-1}$

- **OPT**(*i*, *j*) = cost of opt. alignment of $x_{1:i}$ and $y_{1:j}$
- Case I: only use $x (x_i, -)$
- Case II: only use $y(-, y_j)$
- Case III: use one symbol from each (x_i, y_j)

- **OPT**(*i*, *j*) = cost of opt. alignment of $x_{1:i}$ and $y_{1:j}$
- Case I: only use $x (x_i, -)$
- Case II: only use $y(-, y_j)$
- Case III: use one symbol from each (x_i, y_j)

Recurrence:

 $OPT(i,j) = \begin{cases} 1 + \min\{OPT(i-1,j), OPT(i,j-1), OPT(i-1,j-1)\} \\ \min\{1 + OPT(i-1,j), 1 + OPT(i,j-1), OPT(i-1,j-1)\} \end{cases}$

Base Cases:

OPT(i, 0) = i, OPT(0, j) = j

Edit Distance ("Bottom-Up")

```
// All inputs are global vars
FindOPT(n,m):
 M[0,j] \leftarrow j, M[i,0] \leftarrow i
  for (i = 1, ..., n):
    for (j = 1, ..., m):
      if (xi = yj):
        M[i,j] = min\{1+M[i-1,j], 1+M[i,j-1], M[i-1,j-1]\}
      elseif (xi != yj):
        M[i,j] = 1+\min\{M[i-1,j], M[i,j-1], M[i-1,j-1]\}
  return M[n,m]
```

Summary

- Can compute EDIT in time O(nm)
 - If both strings have length $\leq n$ this is $O(n^2)$ time
 - Same algorithm works for any set of costs you choose for swaps, insertions, and deletions
- Dynamic Programming:
 - Question: Which of the two final symbols are in the optimal alignment?
 - Subproblems: EDIT between each pair of prefixes

Big Open Problem: Can we solve EDIT in $n^{2-\Omega(1)}$ time?

CS3000: Algorithms & Data

- **Unit 3: Dynamic Programming**
 - a. Fibonacci Numbers
 - b. First Problem: Weighted Interval Scheduling
 - c. Knapsacks
 - d. Edit Distance
 - e. Longest Increasing Subsequence

Longest Increasing Subsequence (LIS)

• Input: a sequence of numbers $x_1, ..., x_n$

Longest Increasing Subsequence (LIS)

Input: a sequence of numbers x₁, ..., x_n

increasing subsequence

• Increasing Subsequence: indices $1 \le i_1 \le i_2 \le \dots \le i_k \le n$ such that $x_{i_1} < x_{i_2} < \dots < x_{i_k}$

Longest Increasing Subsequence (LIS)

• Input: a sequence of numbers $x_1, ..., x_n$

increasing subsequence

• Output: a longest increasing subsequence

sequence

longest increasing subsequence

Ask the Audience

• Find a longest increasing subsequence of

Writing the Recurrence

- Let LIS(*j*) be the length of the longest increasing subsequence of *x*₁, ..., *x_j*
- Case *i*: the last element of the sequence is x_i

6	10	14	5	12	8

Writing the Recurrence: Take II

- Let LIS(*j*) be the length of the longest increasing subsequence **that ends with** *x*_{*j*}
- Case *i*: the last two numbers are x_i and x_j

6	10	14	5	12	8

Writing the Recurrence

- Let LIS(*j*) be the length of the longest increasing subsequence **that ends with** *x*_{*i*}
 - Note LIS(n) is **not necessarily** the length of the LIS
 - Need to know $LIS = \max_{j=1...n} LIS(j)$
- Case *i*: the last two numbers are x_i and x_j

Writing the Recurrence

- Let LIS(j) be the length of the longest increasing subsequence that ends with x_i
 - Note LIS(n) is **not necessarily** the length of the LIS
 - Need to know $LIS = \max_{j=1...n} LIS(j)$
- Case *i*: the last two numbers are x_i and x_j

Recurrence:

$$LIS(j) = 1 + \max_{1 \le i < j \text{ and } x_i < x_j} LIS(i)$$

Base Case:

LIS(1) = 1

Practice

• Fill out the values LIS(j) for j = 1, ..., 6

6	10	5	14	8	7

j	1	2	3	4	5	6
LIS(j)	1					

Practice

• Fill out the values LIS(j) for j = 1, ..., 6

6	10	5	14	8	7

j	1	2	3	4	5	6
LIS(j)	1	2	1	3	2	2

Solving the Recurrence: Bottom-Up

```
// All inputs are global vars
FindOPT(n):
    M[1] \leftarrow 1
for (j = 2, ..., n):
    M[j] = 1 + max M[i]
    return max M[j]
```

Recovering the LIS (Final Symbol)

 Let LIS(j) be the length of the longest increasing subsequence that ends with x_i

Recurrence:Length of LIS $LIS(j) = 1 + \max_{1 \le i < j \text{ and } x_i < x_j} LIS(i)$ $LIS = \max_{1 \le j \le n} LIS(j)$

Base Case:

LIS(1) = 1

Recovering the LIS (Other Symbols)

 Let LIS(j) be the length of the longest increasing subsequence that ends with x_i

Recurrence:Length of LIS $LIS(j) = 1 + \max_{1 \le i < j \text{ and } x_i < x_j} LIS(i)$ $LIS = \max_{1 \le j \le n} LIS(j)$

Base Case:

LIS(1) = 1

Recovering the LIS

• Fill out the values LIS(j) for j = 1, ..., 6

Summary

- Can compute a LIS in time $O(n^2)$
 - Same algorithm works for longest non-decreasing, longest decreasing, longest non-increasing, and more
- Dynamic Programming:
 - Question: What is the final symbol in the LIS?
 - Subproblems represent LIS with a specific final symbol
 - The actual optimal value is not always in LIS(n)