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Approximating Edit Distance in Subquadratic Time
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• Blog post by Aviad Rubinstein: https://theorydish.blog/2018/07/20/approximating-edit-distance/
• [BEGHS] “Approximating Edit Distance in Truly Subquadratic Time: Quantum and MapReduce” by 

Boroujeni, Ehsani, Ghodsi, HajiAghayi, Seddighin
• [CDGKS] “Approximating Edit Distance Within Constant Factor in Truly Sub-Quadratic Time” by 

Chakraborty, Das, Goldenberg, Koucky, and Saks
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(Approximate) Edit Distance

• Given two strings 𝑥 ∈ Σ𝑛, 𝑦 ∈ Σ𝑛, the edit distance is the 
number of insertions, deletions, and swaps required to turn 𝑥
into 𝑦.

• Given an alignment, the cost EDIT(𝑥, 𝑦) is the number of 
positions where the two strings don’t agree

• In this lecture, we consider approximating the edit distance 
problem. We say ෫EDIT 𝛼-approximates EDIT(𝑥, 𝑦) if:

EDIT 𝑥, 𝑦 ≤ ෫EDIT ≤ 𝛼 ⋅ EDIT(𝑥, 𝑦)

• In our last lecture, we say that Edit Distance can be solved in 
𝑂(𝑛2) time. This remains the best known exact algorithm! But 
can we approximate it faster?
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Idea 1: Non-crossing Matchings
• Instead of alignments, it will be more convenient to work with 
non-crossing matchings.

• A non-crossing matching matches characters of 𝑥 and 𝑦 s.t. :
1. It only matches identical characters:

For any 𝑥[𝑖] and 𝑦[𝑗] that are matched, 𝑥 𝑖 = 𝑦[𝑗]
2. The matching is non-crossing:

If 𝑥 𝑖 , 𝑦 𝑗 , (𝑥 𝑖′ , 𝑦 𝑗′ ) are both in the matching and 𝑖′ > 𝑖 then 
we also have 𝑗′ > 𝑗.

Claim:
The number of unmatched characters of 𝑥 and 𝑦 in the largest
non-crossing matching is a 2-approximation of EDIT(𝑥, 𝑦).

o   c   u   r   r   a   n   c   e

o   c   c   u   r   r   e   n   c   e

Ri Mi
s o

yflffly



Idea 1: Non-crossing Matchings
Claim: Let ෨𝐸 be the number of unmatched characters of 𝑥 and 𝑦 in 
the largest non-crossing matching. Then:

EDIT 𝑥, 𝑦 ≤ ෫EDIT ≤ 2 ⋅ EDIT(𝑥, 𝑦)
Pf: (EDIT 𝑥, 𝑦 ≤ ෫EDIT)
Delete every unmatched character of 𝑥, and insert every 
unmatched character of 𝑦.
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Idea 1: Non-crossing Matchings
Claim: Let ෨𝐸 be the number of unmatched characters of 𝑥 and 𝑦 in 
the largest non-crossing matching. Then:

EDIT 𝑥, 𝑦 ≤ ෫EDIT ≤ 2 ⋅ EDIT(𝑥, 𝑦)
Pf: ( ෫EDIT ≤ 2 ⋅ EDIT(𝑥, 𝑦))
Take the best alignment and match the characters in identical 
columns. 
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Idea 2: Window Compatibility
Let’s partition 𝑥 and 𝑦 into 𝑡 consecutive substrings--aka windows--
of length ℓ ≔  𝑛/𝑡 each. 

We say a matching is window-compatible if there are no two 
characters in the same window that are matched to two different 
windows.

To constant-approximate edit distance, it suffices to find the largest 
non-crossing window-compatible (NCWC) matching [BEGHS].
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Finding NCWC Matching
Claim: Given the edit distance between any two windows, we can 
find the largest NCWC matching in 𝑂 𝑡2  time.
Idea: Solve a weighted version of edit distance DP.
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Computing window pair distances
Computing exact ED between any pair of windows takes 

𝑡2  × ℓ2  = 𝑡2 × 𝑛
𝑡

2
= 𝑛2 

time! So no progress so far. 

New Goal: Approximate ED between all the pairs.
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Idea 3: Approximating Window Distances
Given a threshold 𝜏, define 𝐺𝜏 to be the bipartite graph over the windows 
such that two windows 𝐴𝑖 and  𝐵𝑗 are adjacent iff 𝐸𝐷 𝐴𝑖, 𝐵𝑗 ≤ 𝜏.

It will be easier to compute ෪𝐺𝜏 instead of 𝐺𝜏 where for any 𝐴𝑖, 𝐵𝑗 :

• If 𝐸𝐷 𝐴𝑖, 𝐵𝑗 ≤ 𝜏:  (𝐴𝑖, 𝐵𝑗) is an edge in ෪𝐺𝜏.

• If 𝐸𝐷 𝐴𝑖, 𝐵𝑗 > 10𝜏:  (𝐴𝑖, 𝐵𝑗) is not an edge in ෪𝐺𝜏.

• If 𝜏 < 𝐸𝐷 𝐴𝑖, 𝐵𝑗 ≤ 10𝜏: (𝐴𝑖, 𝐵𝑗) may or may not be an edge in ෪𝐺𝜏.

Claim: To constant approximate all the pairwise distances between the 
windows, it suffices to compute ෪𝐺𝜏 for 𝑂(log 𝑛) values of 𝜏.
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Idea 3: Approximating Window Distances
Goal: Compute ෪𝐺𝜏 for given 𝜏.

We study two cases separately:

• Dense Case: If 𝐺𝜏 has at least 𝑡7/4 edges.

• Sparse Case: If 𝐺𝜏 has at most 𝑡7/4 edges.

2

it



Idea 3: Approximating Window Distances
• Dense Case: If 𝐺𝜏 has at least 𝑡7/4 edges.
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Idea 3: Approximating Window Distances
• Sparse Case: If 𝐺𝜏 has at most 𝑡7/4 edges.
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Summary
The edit distance can be solved in 𝑂(𝑛2) time exactly.

Under a plausible conjecture (Strong Exponential Time Hypothesis – SETH) 
quadratic time is almost optimal for exact algorithms.

But the edit distance can be constant-approximated in subquadratic time.

OPEN: 

Is it possible to (1 + 𝜖)-approximate edit distance in subquadratic time?
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