CS7800: Advanced Algorithms

Soheil Behnezhad

Approximating Edit Distance in Subquadratic Time

Resources:

- Blog post by Aviad Rubinstein: <u>https://theorydish.blog/2018/07/20/approximating-edit-distance/</u>
- **[BEGHS]** "Approximating Edit Distance in Truly Subquadratic Time: Quantum and MapReduce" by Boroujeni, Ehsani, Ghodsi, HajiAghayi, Seddighin
- **[CDGKS]** "Approximating Edit Distance Within Constant Factor in Truly Sub-Quadratic Time" by Chakraborty, Das, Goldenberg, Koucky, and Saks

(Approximate) Edit Distance

- Given two strings $x \in \Sigma^n$, $y \in \Sigma^n$, the **edit distance** is the number of insertions, deletions, and swaps required to turn x into y. $ED(\chi, \chi)$
- Given an alignment, the cost EDIT(x, y) is the number of positions where the two strings don't agree

• In this lecture, we consider approximating the edit distance problem. We say $\widetilde{\text{EDIT}} \alpha$ -approximates $\operatorname{EDIT}(x, y)$ if:

$EDIT(x, y) \le \widetilde{EDIT} \le \alpha \cdot EDIT(x, y)$

• In our last lecture, we say that Edit Distance can be solved in $O(n^2)$ time. This remains the best known exact algorithm! But can we approximate it faster?

Idea 1: Non-crossing Matchings

Instead of *alignments*, it will be more convenient to work with *non-crossing matchings*.

a;

o c u r r a n c e o c c u r r e n c e

- A non-crossing matching matches characters of x and y s.t. :
 - **1.** It only matches identical characters: For any x[i] and y[j] that are matched, x[i] = y[j]
 - 2. The matching is non-crossing: If (x[i], y[j]), (x[i'], y[j']) are both in the matching and i' > i then we also have j' > j.

Claim:

The number of unmatched characters of x and y in the largest non-crossing matching is a 2-approximation of EDIT(x, y).

Idea 1: Non-crossing Matchings

Claim: Let $\frac{8}{7}$ be the number of unmatched characters of x and y in the largest non-crossing matching. Then:

$$EDIT(x, y) \le \widetilde{EDIT} \le 2 \cdot EDIT(x, y)$$

Pf: (EDIT(x, y) $\leq \widetilde{EDIT}$)

Delete every unmatched character of x, and insert every unmatched character of y.



occurrence

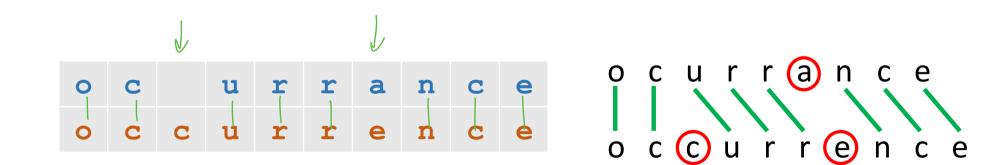
Idea 1: Non-crossing Matchings

Claim: Let \tilde{E} be the number of unmatched characters of x and y in the largest non-crossing matching. Then:

$$EDIT(x, y) \le \widetilde{EDIT} \le 2 \cdot EDIT(x, y)$$

Pf: $(\widetilde{EDIT} \le 2 \cdot EDIT(x, y))$

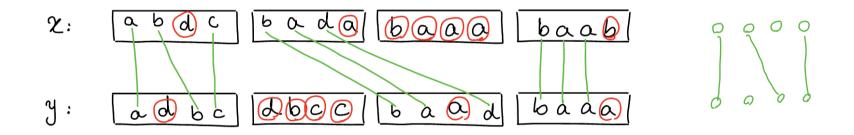
Take the best alignment and match the characters in identical columns.



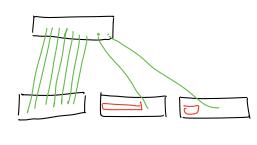
Idea 2: Window Compatibility

Let's partition x and y into t consecutive substrings--aka windows-of length $l \coloneqq n/t$ each.

We say a matching is window-compatible if there are no two characters in the same window that are matched to two different windows.

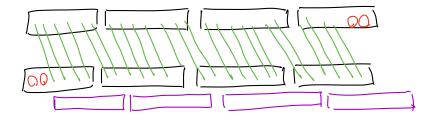


To constant-approximate edit distance, it suffices to find the largest non-crossing window-compatible (NCWC) matching [BEGHS].



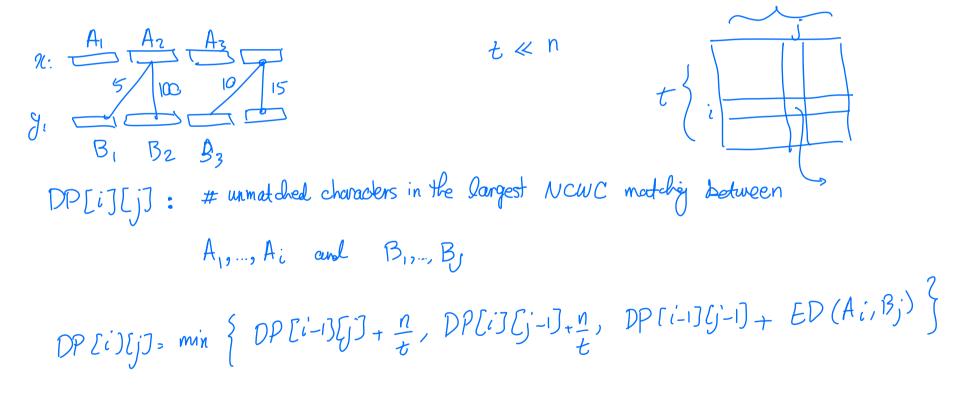
If the largest non-crossing multily matches the characters of one window to >3 other windows, we can afford to lrave all firs characters windows

The argument is much more tricky if the characters of a unindom A: are matched to two consective unindoms B;, B; 1.



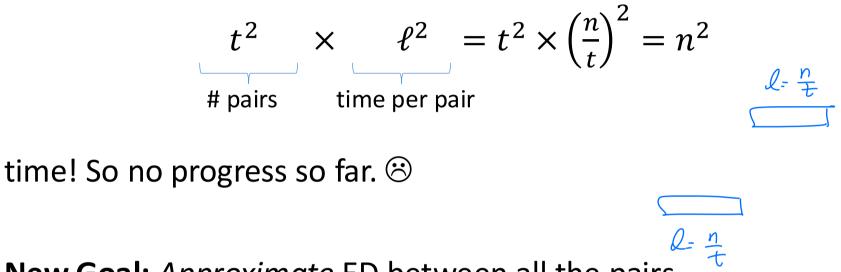
Finding NCWC Matching

Claim: Given the **chief distance** between any two windows, we can find the largest NCWC matching in $O(t^2)$ time. **Idea:** Solve a weighted version of edit distance DP.



Computing window pair distances

Computing exact ED between any pair of windows takes



New Goal: Approximate ED between all the pairs.

Idea 3: Approximating Window Distances ~ {0,...,2l}

Given a threshold $\dot{\tau}$, define G_{τ} to be the bipartite graph over the windows

such that two windows A_i and B_j are adjacent iff $ED(A_i, B_j) \leq \tau$. $q \neq f \in G_{\tau}$ It will be easier to compute $\widetilde{G_{\tau}}$ instead of $\widetilde{G_{\tau}}$ where for any (A_i, B_j) :

also
$$f \in If ED(A_i, B_j) \leq$$

sutisfied $f \in If ED(A_i, B_j) >$

- $\begin{array}{l} \text{olso} \\ \text{substitied} \\ \text{vol} \ G_{\tau} \end{array} \end{array} \stackrel{\text{o}}{} \text{If } ED(A_i, B_j) \leq \tau : \\ \text{(}A_i, B_j) \text{ is an edge in } \widetilde{G_{\tau}}. \\ \text{(}A_i, B_j) \text{ is not an edge in } \widetilde{G_{\tau}}. \\ \text{(}A_i, B_j) \text{ is not an edge in } \widetilde{G_{\tau}}. \end{array}$
 - If $\tau < ED(A_i, B_i) \le 10\tau$: (A_i, B_i) may or may not be an edge in $\widetilde{G_{\tau}}$.

Claim: To constant approximate all the pairwise distances between the windows, it suffices to compute $\widetilde{G_{\tau}}$ for $O(\log n)$ values of τ .

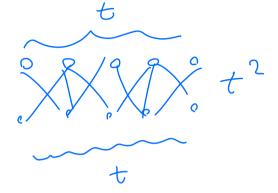
pf: Consider any
$$\mathcal{T} \in \{0, 1, 2, 4, 8, 16, ..., n\}$$
, and find $\widetilde{G}_{\mathcal{T}}$ for each.
Let $\widetilde{ED}(Ai, Bj)$ to be the smallest $\mathcal{T} : s.t. (Ai, Bj) \in \widetilde{G}_{\mathcal{T}}$.
 $\underline{\mathcal{T}}_{2} \in ED(Ai, Bj) \leq 10\tau$

Idea 3: Approximating Window Distances

Goal: Compute $\widetilde{G_{\tau}}$ for given τ .

We study two cases separately:

- **Dense Case:** If G_{τ} has at least $t^{7/4}$ edges.
- Sparse Case: If G_{τ} has at most $t^{7/4}$ edges.



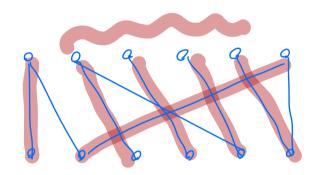
Idea 3: Approximating Window Distances

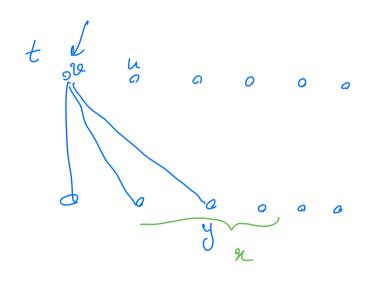
• Dense Case: If
$$G_{\tau}$$
 has at least $t^{7/4}$ edges.
An "average" edge in G_{τ} has $\geq \frac{1}{t} = t^{4}$
edges incident to it.
ALG:
Repeat his for $\frac{dt}{dt}$ steps:
Take one random unidow Ai
Compute ED (Ai, Bj) for all j
If for a pair Aj, Bic we know ED (Aj, Bic) $\leq 3\tau$, we add it as analy to $\frac{5}{2}$
based on distances f Ai
Fix any edge (A₁, B₁) \in G_{τ} . Bey choice f Ai discovers (A₁, B₁) w. p. $z = \frac{t^{3/4}}{t}$
Fix any edge (A₁, B₁) \in G_{τ} . Bey choice f Ai discovers (A₁, B₁) w. p. $z = \frac{t^{3/4}}{t}$

"average" algos.

Idea 3: Approximating Window Distances

• Sparse Case: If G_{τ} has at most $t^{7/4}$ edges.





Key insight: Take two windows 20 and a that are close (in position), then it suffices to make ED query calls only for pairs (4,26) where (22, y) is an edge and & is close (in position) to y.

Summary

The edit distance can be solved in $O(n^2)$ time exactly.

Under a plausible conjecture (Strong Exponential Time Hypothesis – SETH) quadratic time is almost optimal for exact algorithms.

But the edit distance can be constant-approximated in subquadratic time.

OPEN:

Is it possible to $(1 + \epsilon)$ -approximate edit distance in subquadratic time?

First step: Beard 3-apx.