CS7800: Advanced Algorithms
Soheil Behnezhad

Approximating Edit Distance in Subquadratic Time

Resources:
* Blog post by Aviad Rubinstein: https://theorydish.blog/2018/07/20/approximating-edit-distance/

* [BEGHS] “Approximating Edit Distance in Truly Subquadratic Time: Quantum and MapReduce” by
Boroujeni, Ehsani, Ghodsi, HajiAghayi, Seddighin

 [CDGKS] “Approximating Edit Distance Within Constant Factor in Truly Sub-Quadratic Time” by
Chakraborty, Das, Goldenberg, Koucky, and Saks



https://theorydish.blog/2018/07/20/approximating-edit-distance/

(Approximate) Edit Distance

 Given two strings x € £,y € £, the edit distance is the
number of insertions, deletions, and swaps required to turn x

into . ED(K, %33
* Given an alignment, the cost EDIT(x, y) is the number of
positions where the two strings don’t agree
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* |n this lecture, we consider approximating the edit distance ’

problem. We say EDIT a-approximates EDIT(x, y) if: !
K| ghee

EDIT(x,y) < EDIT < a - EDIT(x, y)

* In our last lecture, we say that Edit Distance can be solved in

0(n?) time. This remains the best known exact algorithm! But
can we approximate it faster?



ldea 1: Non-crossing Matchings

* Instead of alignments, it will be more convenient to work with

non-crossing matchings
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* A non-crossing matching matches characters of x and Yy S. t

1. It only matches identical characters:
For any x[i] and y[j] that are matched, x[i] = y[/]

2. The matching is non-crossing:
If (x[i], vIjD), (x[i'l, y[j']) are both in the matching and i’ > i then

we also have j' > j.

Claim:
The number of unmatched characters of x and y in the largest

non-crossing matching is a 2-approximation of EDIT(x, y).



Idea 1: Non-crossing Matchings

AN
Claim: Let # be the number of unmatched characters of x and y in
the largest non-crossing matching. Then:

EDIT(x,y) < EDIT < 2 - EDIT(x, y)
Pf: (EDIT(x,y) < EDIT)

Delete every unmatched character of x, and insert every
unmatched character of y.
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ldea 1: Non-crossing Matchings

Claim: Let E be the number of unmatched characters of x and y in
the largest non-crossing matching. Then:

EDIT(x,y) < EDIT < 2 - EDIT(x, y)
Pf: (EDIT < 2 - EDIT(x,y))

Take the best alignment and match the characters in identical
columns.
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ldea 2: Window Compatibility

Let’s partition x and y into ¢ consecutive substrings--aka windows--
of length £ := n/t each.

We say a matching is window-compatible if there are no two
characters in the same window that are matched to two different

windows.
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To constant-approximate edit distance, it suffices to find the largest
non-crossing window-compatible (NCWC) matching [BEGHS].
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Finding NCWC Matching

Qmﬂes*‘ NC w\cd\cof\g
Claim: Given the egiedisaide between any two windows, we can
find the Jargest NCWC matching in O(t*) time.
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Idea: Solve a weighted version of edit distance DP.
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Computing window pair distances

Computing exact ED between any pair of windows takes

2
t2  x  {2 :tzx(%) = n?

i o . .
pairs time per pair — T
time! So no progress so far. ®
1
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New Goal: Approximate ED between all the pairs._



ldea 3: Approximating Window Distances
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Given a threshold 7, define G, to be the bipartite graph over the windows
such that two windows A; and B are adjacent iff ED(AL, B; ) <T.
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It will be easier to compute G, mstead of G, whére for any (4;, B-):
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Qﬁ:fa i‘ If ED(Ai,B-) <T: (A;, Bj) is an edge in G;. 0. Mw@g G
% _—
7 G, (° If ED(AL,B ) > 107: (A;, Bj) is not an edge in G;.
e Ift < ED(Al-, Bj) < 107: (A;, Bj) may or may not be an edge in G,.

Claim: To constant approximate all the pairwise distances between the
windows, it suffices to compute G, for O(logn) values of 7.
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ldea 3: Approximating Window Distances
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Goal: Compute G, for given 1. 5 Y
SO ¢
We study two cases separately: e
2
« Dense Case: If G, has at least t7/* edges.

« Sparse Case: If G, has at most t7/* edges.



ldea 3: Approximating Window Distances
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* Dense Case: If G, has at least t7/# edges. Lo
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ldea 3: Approximating Window Distances

« Sparse Case: If G, has at most t7/* edges.
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Summary

The edit distance can be solved in 0(n?) time exactly.
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Under a plausible conjecture (Strong Exponential Time Hypothesis — SETH)

quadratic time is almost optimal for exact algorithms. o
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But the edit distance can be constant-approximated in subquadratic time.

OPEN:

s it possible to (1 + €)-approximate edit distance in subquadratic time?
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