CS7800: Advanced Algorithms
Soheil Behnezhad

Approximating Edit Distance in Subquadratic Time

Resources:
* Blog post by Aviad Rubinstein: https://theorydish.blog/2018/07/20/approximating-edit-distance/

* [BEGHS] “Approximating Edit Distance in Truly Subquadratic Time: Quantum and MapReduce” by
Boroujeni, Ehsani, Ghodsi, HajiAghayi, Seddighin

 [CDGKS] “Approximating Edit Distance Within Constant Factor in Truly Sub-Quadratic Time” by
Chakraborty, Das, Goldenberg, Koucky, and Saks

https://theorydish.blog/2018/07/20/approximating-edit-distance/

(Approximate) Edit Distance

 Given two strings x € £,y € £, the edit distance is the
number of insertions, deletions, and swaps required to turn x

into . ED(K, %33
* Given an alignment, the cost EDIT(x, y) is the number of
positions where the two strings don’t agree

o C u ¥r rpap/m € e

o c'cu r T gepI © e

\
- : : : g X7
* |n this lecture, we consider approximating the edit distance ’

problem. We say EDIT a-approximates EDIT(x, y) if: !
K| ghee

EDIT(x,y) < EDIT < a - EDIT(x, y)

* In our last lecture, we say that Edit Distance can be solved in

0(n?) time. This remains the best known exact algorithm! But
can we approximate it faster?

ldea 1: Non-crossing Matchings

* Instead of alignments, it will be more convenient to work with

non-crossing matchings
@n ce

\ \ \\\ \\\ X\

urr n C €

* A non-crossing matching matches characters of x and Yy S. t

1. It only matches identical characters:
For any x[i] and y[j] that are matched, x[i] = y[/]

2. The matching is non-crossing:
If (x[i], vIjD), (x[i'l, y[j']) are both in the matching and i’ > i then

we also have j' > j.

Claim:
The number of unmatched characters of x and y in the largest

non-crossing matching is a 2-approximation of EDIT(x, y).

Idea 1: Non-crossing Matchings

AN
Claim: Let # be the number of unmatched characters of x and y in
the largest non-crossing matching. Then:

EDIT(x,y) < EDIT < 2 - EDIT(x, y)
Pf: (EDIT(x,y) < EDIT)

Delete every unmatched character of x, and insert every
unmatched character of y.

X +€
ne
urr@nce occurrend

ANV

+C

c‘)
0]

n_n

ldea 1: Non-crossing Matchings

Claim: Let E be the number of unmatched characters of x and y in
the largest non-crossing matching. Then:

EDIT(x,y) < EDIT < 2 - EDIT(x, y)
Pf: (EDIT < 2 - EDIT(x,y))

Take the best alignment and match the characters in identical
columns.

urr@nce

(‘) c‘:@)\u\r\r@\n\c\e

S
o p <

O __
Q —
Q
o
N
H—H
o B
a—0
®—0

ldea 2: Window Compatibility

Let’s partition x and y into ¢ consecutive substrings--aka windows--
of length £ := n/t each.

We say a matching is window-compatible if there are no two
characters in the same window that are matched to two different

windows.

oo (2@]2 dE@ |]| baabd] ©goo0
Y IR
J: @ be]|RIO ([o &yl baap) ’

To constant-approximate edit distance, it suffices to find the largest
non-crossing window-compatible (NCWC) matching [BEGHS].

T 1P Pe Qwrﬁes-} nomcms»'rﬁ W%
Makhes Yo characlrs of Mo il £o
23 oo widons, we Can a//ad to

’ — .,
JIE Qe ol «ﬁ s characlors Lmabld

The Mam S VWMJ/\ YWOMN2 '\\/";C\(a ‘lﬁ ”"Qﬂ C&MQ/I’S ’6_ (b8 WV‘QOOW Aé are W\O‘MJ ”{_O

Lo ComSeadive thivolowts %)’Bj<\~

Finding NCWC Matching

Qmﬂes*‘ NC w\cd\cof\g
Claim: Given the egiedisaide between any two windows, we can
find the Jargest NCWC matching in O(t*) time.

(a 7\)

Idea: Solve a weighted version of edit distance DP.
r\/\—s-/“
& et t«h |
27, \ t
B(BZ 93

Dp)ibj[.\)] . 2 umakdhed, chardlers in Yo anﬂiesi' NecwC W\mﬁ% beAuwoen
A\,...,A(’, GU/J— 6,7-., BJ

| Dl raJn DPLEal-) 4+ ED (AL B
op £ogp- wa | OPLEOG1= 2, PPLIG0:3, DPECGD- ﬁ

Computing window pair distances

Computing exact ED between any pair of windows takes

2
t2 x {2 :tzx(%) = n?

i o . .
pairs time per pair — T
time! So no progress so far. ®
1
b %

New Goal: Approximate ED between all the pairs._

ldea 3: Approximating Window Distances

10,24}

P
Given a threshold 7, define G, to be the bipartite graph over the windows
such that two windows A; and B are adjacent iff ED(AL, B;) <T.

o As
Gpyt ﬂ G s ‘:/ig___/e i COR,,B) < T
Ba %3 @
It will be easier to compute G, mstead of G, whére for any (4;, B-):
. . e a'“é/ E’age in Clro 'S
Qﬁ:fa i‘ If ED(Ai,B-) <T: (A;, Bj) is an edge in G;. 0. Mw@g G
% _—
7 G, (° If ED(AL,B) > 107: (A;, Bj) is not an edge in G;.
e Ift < ED(Al-, Bj) < 107: (A;, Bj) may or may not be an edge in G,.

Claim: To constant approximate all the pairwise distances between the
windows, it suffices to compute G, for O(logn) values of 7.

PQ: Cowéiolwr a/tﬁ (CG{O,I/(L/ZF: 8,(6,_..an7 ardl fwxal af £O’l’ GMK

Lt ED(A,B) 4o bo ¥ smllest T st (AL B)e Gy

T < ED(A, B loT

ldea 3: Approximating Window Distances

&
—_— . P~
Goal: Compute G, for given 1. 5 Y
SO ¢
We study two cases separately: e
2
« Dense Case: If G, has at least t7/* edges.

« Sparse Case: If G, has at most t7/* edges.

ldea 3: Approximating Window Distances

BLWE . q,.
* Dense Case: If G, has at least t7/# edges. Lo
A —— A
e ¥ RN .
(AW I(Iumaﬁe” Qolde in C,,c, has 2_‘_&__ -1 4 ?/O\ ¢ @
t e :- T
Pﬂaes inciol@/lt T +. 3 Y"a Q@ o @ o0 o
| '3/4
ALG Déb 2 2 ED(A,B)<T
R@Oﬁ’ﬂ‘k ﬁg{ db §JrePS Tt ime ;. £ t = 23/4 ED(AL- 7711') <o
Take one tandom wundow B¢ D(A B) <
2 (z_ 19 \ -\-
e D005 b5 Ty o) e
Compe ED (A,) Por ol)

1P fo aput BB we \cuaw/\ED(ﬂJ‘,\?@ 43T, W wlol i asw% Fe QZ,'
basel on distances f A
For o ﬁolde (A,B) e G Emg C_I')OICE,%/ Iﬂb disamors (A, B) wp oy b

~|

= ¢ 4_ le,%d,f it 5%“55 5 rer)mL fWOL) Herdons 1o aﬂsw &5/

%
{:4

ldea 3: Approximating Window Distances

« Sparse Case: If G, has at most t7/* edges.
W
/(gj fnSv%: Tadce two au'ua(OwS

o 0 0 o 20 amd u \LQ&I are clese (v, ()oﬁ’IW’B,
N \HQM it év/%‘ces fo mafse ED _c}wwa
) Calls ouly Pow Puvs (U udayo

5 (8, y) s ama%ﬂ amnd s clige
(™" posihon) -, 5

Summary

The edit distance can be solved in 0(n?) time exactly.

0 fiwo “ﬁﬁ‘) e AT

e
Under a plausible conjecture (Strong Exponential Time Hypothesis — SETH)

quadratic time is almost optimal for exact algorithms. o

ETH . No 7 ’Fl«'W\C

But the edit distance can be constant-approximated in subquadratic time.

OPEN:

s it possible to (1 + €)-approximate edit distance in subquadratic time?

[resh S‘)ﬁff Beod g—@()%.

