
CS7800: Advanced Algorithms
Soheil Behnezhad

Approximating Edit Distance in Subquadratic Time

Resources:
• Blog post by Aviad Rubinstein: https://theorydish.blog/2018/07/20/approximating-edit-distance/
• [BEGHS] “Approximating Edit Distance in Truly Subquadratic Time: Quantum and MapReduce” by

Boroujeni, Ehsani, Ghodsi, HajiAghayi, Seddighin
• [CDGKS] “Approximating Edit Distance Within Constant Factor in Truly Sub-Quadratic Time” by

Chakraborty, Das, Goldenberg, Koucky, and Saks

https://theorydish.blog/2018/07/20/approximating-edit-distance/

(Approximate) Edit Distance

• Given two strings 𝑥 ∈ Σ𝑛, 𝑦 ∈ Σ𝑛, the edit distance is the
number of insertions, deletions, and swaps required to turn 𝑥
into 𝑦.

• Given an alignment, the cost EDIT(𝑥, 𝑦) is the number of
positions where the two strings don’t agree

• In this lecture, we consider approximating the edit distance
problem. We say ෫EDIT 𝛼-approximates EDIT(𝑥, 𝑦) if:

EDIT 𝑥, 𝑦 ≤ ෫EDIT ≤ 𝛼 ⋅ EDIT(𝑥, 𝑦)

• In our last lecture, we say that Edit Distance can be solved in
𝑂(𝑛2) time. This remains the best known exact algorithm! But
can we approximate it faster?

o c u r r a n c e

o c c u r r e n c e

ED X Y

2 1 exact

Idea 1: Non-crossing Matchings
• Instead of alignments, it will be more convenient to work with
non-crossing matchings.

• A non-crossing matching matches characters of 𝑥 and 𝑦 s.t. :
1. It only matches identical characters:

For any 𝑥[𝑖] and 𝑦[𝑗] that are matched, 𝑥 𝑖 = 𝑦[𝑗]
2. The matching is non-crossing:

If 𝑥 𝑖 , 𝑦 𝑗 , (𝑥 𝑖′ , 𝑦 𝑗′) are both in the matching and 𝑖′ > 𝑖 then
we also have 𝑗′ > 𝑗.

Claim:
The number of unmatched characters of 𝑥 and 𝑦 in the largest
non-crossing matching is a 2-approximation of EDIT(𝑥, 𝑦).

o c u r r a n c e

o c c u r r e n c e

Ri Mi
s o

yflffly

Idea 1: Non-crossing Matchings
Claim: Let ෨𝐸 be the number of unmatched characters of 𝑥 and 𝑦 in
the largest non-crossing matching. Then:

EDIT 𝑥, 𝑦 ≤ ෫EDIT ≤ 2 ⋅ EDIT(𝑥, 𝑦)
Pf: (EDIT 𝑥, 𝑦 ≤ ෫EDIT)
Delete every unmatched character of 𝑥, and insert every
unmatched character of 𝑦.

o c u r r a n c e

o c c u r r e n c e

EDIT

c te
occurrence

Idea 1: Non-crossing Matchings
Claim: Let ෨𝐸 be the number of unmatched characters of 𝑥 and 𝑦 in
the largest non-crossing matching. Then:

EDIT 𝑥, 𝑦 ≤ ෫EDIT ≤ 2 ⋅ EDIT(𝑥, 𝑦)
Pf: (෫EDIT ≤ 2 ⋅ EDIT(𝑥, 𝑦))
Take the best alignment and match the characters in identical
columns.

o c u r r a n c e

o c c u r r e n c e

o c u r r a n c e

o c c u r r e n c e
l l l l l l l l

Idea 2: Window Compatibility
Let’s partition 𝑥 and 𝑦 into 𝑡 consecutive substrings--aka windows--
of length ℓ ≔ 𝑛/𝑡 each.

We say a matching is window-compatible if there are no two
characters in the same window that are matched to two different
windows.

To constant-approximate edit distance, it suffices to find the largest
non-crossing window-compatible (NCWC) matching [BEGHS].

o o o

ti

Ifthelargestnoncrossingmatchy
matchesthecharactersofonewindowto

leave allofitscharacters unmateld
a.it It E

two consecutive windows Bj Bj

E.EEIEEEEE

Finding NCWC Matching
Claim: Given the edit distance between any two windows, we can
find the largest NCWC matching in 𝑂 𝑡2 time.
Idea: Solve a weighted version of edit distance DP.

longestNCmatching

Mmmmm
Tapx

a it ten

a ff.IE tE
DP I j

unmatchedcharactersinthelargestNCWCmatchy between

A Ai and Bir By

DPE g min DP I 1353 DPC35 11 DPTING 1 ED Ai B

Computing window pair distances
Computing exact ED between any pair of windows takes

𝑡2 × ℓ2 = 𝑡2 × 𝑛
𝑡

2
= 𝑛2

time! So no progress so far. 

New Goal: Approximate ED between all the pairs.

pairs time per pair t

D

Idea 3: Approximating Window Distances
Given a threshold 𝜏, define 𝐺𝜏 to be the bipartite graph over the windows
such that two windows 𝐴𝑖 and 𝐵𝑗 are adjacent iff 𝐸𝐷 𝐴𝑖, 𝐵𝑗 ≤ 𝜏.

It will be easier to compute ෪𝐺𝜏 instead of 𝐺𝜏 where for any 𝐴𝑖, 𝐵𝑗 :

• If 𝐸𝐷 𝐴𝑖, 𝐵𝑗 ≤ 𝜏: (𝐴𝑖, 𝐵𝑗) is an edge in ෪𝐺𝜏.

• If 𝐸𝐷 𝐴𝑖, 𝐵𝑗 > 10𝜏: (𝐴𝑖, 𝐵𝑗) is not an edge in ෪𝐺𝜏.

• If 𝜏 < 𝐸𝐷 𝐴𝑖, 𝐵𝑗 ≤ 10𝜏: (𝐴𝑖, 𝐵𝑗) may or may not be an edge in ෪𝐺𝜏.

Claim: To constant approximate all the pairwise distances between the
windows, it suffices to compute ෪𝐺𝜏 for 𝑂(log 𝑛) values of 𝜏.

99 213

aptofGe Ge ftp fffffg iffEDCAsiBake

anyedgeinGeis
Stified Einar
JGE

Pf Consider
any E E 0,1 2 4 8,16 n andfindG for each

Let ÉD Ai B tobethesmallest I s t Ai B Gt
I EDCAiB 109

Idea 3: Approximating Window Distances
Goal: Compute ෪𝐺𝜏 for given 𝜏.

We study two cases separately:

• Dense Case: If 𝐺𝜏 has at least 𝑡7/4 edges.

• Sparse Case: If 𝐺𝜏 has at most 𝑡7/4 edges.

2

it

Idea 3: Approximating Window Distances
• Dense Case: If 𝐺𝜏 has at least 𝑡7/4 edges.

BLUE Gt

An average edge in G has o a o

edges incidentto it Bio e e o e n e

2 ED Ai B T

Fertility.fitnfifia tattine EDCAi.net

compute EA AiBj forall at q 04m
A Bd

Compute ED Ai A forall j

If forapair AjBic weknow D AjRic 3T weaddit asanyto
basedondistaniesofAi

Fixanyedge A B e fire Everychoiceof Ai discovers A B a p
4

E Therefore itsuffinesto repeatfor y iterationsto discover all

Idea 3: Approximating Window Distances
• Sparse Case: If 𝐺𝜏 has at most 𝑡7/4 edges.

average edges

o a o a o

ANY
Finsight Taketwowindowst he 4 a o o a reanda thatareclose inposition

then it sufficestomakeEDquery

g
callsonlyforpairs ya where
V y is anedge and a isclose
inposition to y

Summary
The edit distance can be solved in 𝑂(𝑛2) time exactly.

Under a plausible conjecture (Strong Exponential Time Hypothesis – SETH)
quadratic time is almost optimal for exact algorithms.

But the edit distance can be constant-approximated in subquadratic time.

OPEN:

Is it possible to (1 + 𝜖)-approximate edit distance in subquadratic time?

no 2099 timealga for3SAT

ETH no 2 time

Firststep Beat3apt

