
Network Flow

Flow Networks
• Directed graph 𝐺 = 𝑉, 𝐸
• Two special nodes: source 𝑠 and sink 𝑡
• Edge capacities 𝑐 𝑒
• Assume strongly connected (for simplicity)

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4
capacity

source sink

Flows
• An s-t flow is a function 𝑓 𝑒 such that

• For every 𝑒 ∈ 𝐸, 0 ≤ 𝑓 𝑒 ≤ 𝑐 𝑒 (capacity)
• For every 𝑣 ∈ 𝑉 ∖ {𝑠, 𝑡}, σ𝑒 in to 𝑣 𝑓 𝑒 = σ𝑒 out of 𝑣 𝑓 𝑒 (conservation)

• The value of a flow is 𝑣𝑎𝑙 𝑓 = σ𝑒 out of 𝑠 𝑓 𝑒

4

0

0

0

0 0

0 4 4

0
0

0

0

capacity
flow

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4 0

4

Maximum Flow Problem
• Given G = (V,E,s,t,{c(e)}), find an s-t flow of maximum value

• value(f) =

10

9

9

14

4 10

4 8 9

1
0

0

14

capacity
flow

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4 0

0

10 4 14 28

Cuts
• An s-t cut is a partition (𝐴, 𝐵) of 𝑉 with 𝑠 ∈ 𝐴 and 𝑡 ∈ 𝐵

• The capacity of a cut (A,B) is 𝑐𝑎𝑝 𝐴, 𝐵 = σ𝑒 out of 𝐴 𝑐 𝑒

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4
capacity

source sink

Minimum Cut problem
• Given G = (V,E,s,t,{c(e)}), find an s-t cut of minimum capacity

• cap({s,3,4,7}, {2,5,6,t}) =

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4
capacity

source sink

28

Flows & Cuts: Closely Related
• Fact: If 𝑓 is any s-t flow and (𝐴, 𝐵) is any s-t cut, then the

net flow across (𝐴, 𝐵) is equal to the amount leaving s
• The net flow across any s-t cut

is the same! ෍
𝑒 out of 𝐴

𝑓 𝑒 − ෍
𝑒 in to 𝐴

𝑓 𝑒 = 𝑣𝑎𝑙(𝑓)

10

9

9

14

4 10

4 8 9

1
0

0

14

capacity
flow

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4 0

0

al f 28

Cuts & Flows

• Let 𝑓 be any s-t flow and (𝐴, 𝐵) any s-t cut,

𝑣𝑎𝑙 𝑓 ≤ 𝑐𝑎𝑝(𝐴, 𝐵)
pace

valet IIate ate

Ʃ e o

CouthA

Cap A B

True or False?
• The max flow always has an edge e leaving the source s

such that f(e) = c(e) (is saturated)?

• The max flow always has an edge e such that f(e) = c(e)
(is saturated)?

False at

True Takeanypathfrom
stat

5 t and increase the flowover

thepath

Network Flow
a. Key concepts and problem definitions
b. Augmenting paths nd greedy max flow

Augmenting Paths
• Given a network 𝐺 = (𝑉, 𝐸, 𝑠, 𝑡, 𝑐 𝑒) and a flow 𝑓, an

augmenting path 𝑃 is a simple 𝑠 → 𝑡 path such that
𝑓(𝑒) < 𝑐(𝑒) for every edge 𝑒 ∈ 𝑃

s

1

2

t

10

10

10 10

0 0

0

20

20

30

• Are these augmenting paths?
• s – 1 – t
• s – 2 – t
• s – 1 – 2 - t

Greedy Max Flow
• Start with 𝑓 𝑒 = 0 for all edges 𝑒 ∈ 𝐸
• Find an augmenting path 𝑃 & increase flow by max amount
• Repeat until you get stuck

s

1

2

t

10

10

0 0

0 0

0

20

20

30

10
10

10

210
10

Does Greedy Work?
• Greedy gets stuck before finding a max flow
• How can we get from our solution to the max flow?

s

1

2

t

10

10

20 0

0 20

20

20

20

30 s

1

2

t

10

10

20 10

10 20

10

20

20

30

greedy optimal

Residual Graphs
• Original edge: 𝑒 = 𝑢, 𝑣 ∈ 𝐸.

• Flow 𝑓(𝑒), capacity 𝑐(𝑒)
• Residual capacity: c(e) – f(e)

• Residual edge
• Allows “undoing” flow
• 𝑒 = 𝑢, 𝑣 and 𝑒𝑅 = 𝑣, 𝑢 .
• cap(𝑒𝑅) = f(e)

• Residual graph 𝐺𝑓 = 𝑉, 𝐸𝑓
• Original edges with positive residual capacity & residual edges with

positive flow
• 𝐸𝑓 = 𝑒 ∶ 𝑓 𝑒 < 𝑐 𝑒 ∪ 𝑒𝑅 ∶ 𝑓 𝑒 > 0 .

originalgraph
residualgraph

cies feel

4

Ford-Fulkerson Algorithm
• Start with 𝑓 𝑒 = 0 for all edges 𝑒 ∈ 𝐸
• Find an augmenting path 𝑃 in the residual graph
• Repeat until you get stuck

s

1

2

t

10

10

20 0

0 20

20

20

20

30 s

1

2

t

to
go

FA

A10

Augmenting Paths in Residual Graphs
• Let 𝐺𝑓 be a residual graph
• Let 𝑃 be an augmenting path in the residual graph
• Fact: 𝑓’ = Augment(𝐺𝑓, 𝑃) is a valid flow

Augment(Gf, P)
 b  the minimum capacity of an edge in P
 for e  P
 if (e is an original edge):
 f(e)  f(e) + b

else:
 f(𝑒𝑅)  f(𝑒𝑅) - b
 return f

Ford-Fulkerson Algorithm

Augment(Gf, P)
 b  the minimum capacity of an edge in P
 for e  P
 if (e is an original edge): f(e)  f(e) + b

else: f(𝑒𝑅)  f(𝑒𝑅) - b
 return f

FordFulkerson(G,s,t,{c(e)})
 for e  E: f(e)  0
 Gf is the residual graph

 while (there is an s-t path P in Gf)
 f  Augment(Gf,P)

update Gf

 return f

Ford-Fulkerson Demo

s

2

3

4

5 t10

10

9

8

4

10

1062

s

2

3

4

5 t

𝐺:

𝐺𝑓:

3

5 6

9 9 8

411

What do we want to prove?

Running Time of Ford-Fulkerson
• For integer capacities, ≤ 𝑣𝑎𝑙 𝑓∗ augmentation steps

• Can perform each augmentation step in 𝑂 𝑚 time
• find augmenting path in 𝑂 𝑚
• augment the flow along path in 𝑂 𝑛
• update the residual graph along the path in 𝑂 𝑛

• For integer capacities, FF runs in 𝑂 𝑚 ⋅ 𝑣𝑎𝑙 𝑓∗ time
• 𝑂 𝑚𝑛 time if all capacities are 𝑐𝑒 = 1
• 𝑂 𝑚𝑛𝐶max time for any integer capacities ≤ 𝐶max
• Problematic when capacities are large—more on this later!

Network Flow
a. Key concepts and problem definitions
b. Augmenting paths and greedy max flow
c. The Ford-Fulkerson Algorithm
d. Optimality of Ford-Fulkerson and Duality

Optimality of Ford-Fulkerson
• Theorem: 𝑓 is a maximum s-t flow if and only if there is no

augmenting s-t path in 𝐺𝑓

• Strong MaxFlow-MinCut Duality: The value of the max s-t
flow equals the capacity of the min s-t cut

• We’ll prove that the following are equivalent for all 𝑓
1. There exists a cut (𝐴, 𝐵) such that 𝑣𝑎𝑙 𝑓 = 𝑐𝑎𝑝(𝐴, 𝐵)
2. Flow 𝑓 is a maximum flow
3. There is no augmenting path in 𝐺𝑓

Optimality of Ford-Fulkerson
• Theorem: the following are equivalent for all 𝑓

1. There exists a cut (𝐴, 𝐵) such that 𝑣𝑎𝑙 𝑓 = 𝑐𝑎𝑝(𝐴, 𝐵)
2. Flow 𝑓 is a maximum flow
3. There is no augmenting path in 𝐺𝑓

Optimality of Ford-Fulkerson
• (3 → 1) If there is no augmenting path in 𝐺𝑓, then there is a

cut (𝐴, 𝐵) such that 𝑣𝑎𝑙(𝑓) = 𝑐𝑎𝑝(𝐴, 𝐵)
• Let 𝐴 be the set of nodes reachable from 𝑠 in 𝐺𝑓
• Let 𝐵 be all other nodes

Optimality of Ford-Fulkerson
• (3 → 1) If there is no augmenting path in 𝐺𝑓, then there is a

cut (𝐴, 𝐵) such that 𝑣𝑎𝑙(𝑓) = 𝑐𝑎𝑝(𝐴, 𝐵)
• Let 𝐴 be the set of nodes reachable from 𝑠 in 𝐺𝑓
• Let 𝐵 be all other nodes
• Key observation: no edges in 𝐺𝑓 go from 𝐴 to 𝐵

• If 𝑒 is 𝐴 → 𝐵, then 𝑓 𝑒 = 𝑐 𝑒
• If 𝑒 is 𝐵 → 𝐴, then 𝑓 𝑒 = 0

original network

s

t

A B

Ask the Audience
• Is this a maximum flow?

• Is there an integer maximum flow?
• Does every graph with integer capacities have an integer

maximum flow?

s

a

c

b

d

t

1
1

1
0.5

1
1

1
1

1
0.5

2
1.5

1
0.5

Summary
• The Ford-Fulkerson Algorithm solves maximum s-t flow

• Running time 𝑂 𝑚 ⋅ 𝑣𝑎𝑙 𝑓∗ in networks with integer capacities

• Strong MaxFlow-MinCut Duality: max flow = min cut
• The value of the maximum s-t flow equals the capacity of the

minimum s-t cut
• If 𝑓∗ is a maximum s-t flow, then the set of nodes reachable from s

in 𝐺𝑓∗ gives a minimum cut
• Given a max-flow, can find a min-cut in time 𝑂 𝑛 + 𝑚

• Every graph with integer capacities has an integer
maximum flow

• Ford-Fulkerson will return an integer maximum flow

Network Flow
a. Key concepts and problem definitions
b. Augmenting paths and greedy max flow
c. The Ford-Fulkerson Algorithm
d. Optimality of Ford-Fulkerson and Duality
e. Choosing good augmenting paths

Speeding Up Ford-Fulkerson

s

1

2

t

C

C

C

C

1

• Start with 𝑓 𝑒 = 0 for all edges 𝑒 ∈ 𝐸
• Find an augmenting path 𝑃 in the residual graph 𝐺𝑓
• Repeat until you get stuck

s

1

2

t

Choosing Good Augmenting Paths

• Last time: arbitrary augmenting paths
• If Ford-Fulkerson terminates, then we have found a max flow
• Can construct capacities where the algorithm never terminates
• Can require many augmenting paths to terminate

• Today: clever augmenting paths
• Maximum-capacity augmenting path (“fattest path”)
• Shortest augmenting paths (“shortest path”)

Fattest Augmenting Path

• Maximum-capacity augmenting path

• Can find the fattest augmenting path in time 𝑂 𝑚 log 𝐶 in
several different ways

• Variants of Prim’s or Kruskal’s MST algorithm
• BFS + binary search

Arbitrary Paths

• Assume integer capacities

• Value of maxflow: 𝑣∗

• Value of aug path: ≥ 1

• Flow remaining in 𝐺𝑓: ≤ 𝑣∗ − 1

• # of aug paths: ≤ 𝑣∗

Maximum-Capacity Path

• Assume integer capacities

• Value of maxflow: 𝑣∗

• Value of aug path:

• Flow remaining in 𝐺𝑓:

• # of aug paths:

Fattest Augmenting Path

Fattest Augmenting Path
• 𝑓∗ is a maximum flow with value 𝑣∗ = 𝑣𝑎𝑙 𝑓∗

• 𝑃 is a fattest augmenting s-t path with capacity 𝐵
• Key Claim: 𝐵 ≥ 𝑣∗

𝑚

s

2

3

4

5 t10

10

9

8

4

9

1062

Fattest Augmenting Path
• 𝑓∗ is a maximum flow with value 𝑣∗ = 𝑣𝑎𝑙 𝑓∗

• 𝑃 is a fattest augmenting s-t path with capacity 𝐵
• Key Claim: 𝐵 ≥ 𝑣∗

𝑚
• Proof:

Arbitrary Paths

• Assume integer capacities

• Value of maxflow: 𝑣∗

• Value of aug path: ≥ 1

• Flow remaining in 𝐺𝑓: ≤ 𝑣∗ − 1

• # of aug paths: ≤ 𝑣∗

Maximum-Capacity Path

• Assume integer capacities

• Value of maxflow: 𝑣∗

• Value of aug path:

• Flow remaining in 𝐺𝑓:

• # of aug paths:

Fattest Augmenting Path

Choosing Good Paths
• Last time: arbitrary augmenting paths

• If Ford-Fulkerson terminates, it has found a maximum flow

• Today: clever augmenting paths
• Maximum-capacity augmenting path (“fattest augmenting path”)

• ≤ 𝑚 augmenting paths (assuming integer capacities)
• 𝑂(𝑚2 ln 𝐶) total running time

• Shortest augmenting paths (“shortest augmenting path”)

Shortest Augmenting Path & Improvements

• Find the augmenting path with the fewest hops
• Can find shortest augmenting path in 𝑂(𝑚) time using BFS

• Theorem: for any capacities 𝑛𝑚/2 augmentations suffice
• Overall running time 𝑂 𝑚2𝑛
• Works for any capacities!

• Warning: the proof is challenging, so we will skip it

• Better Theorem: Max flow can be solved in 𝑂 𝑚𝑛 time
• You can use this fact for all future assignments/exams

Choosing Good Augmenting Paths

• Last time: arbitrary augmenting paths
• If Ford-Fulkerson terminates, then we have found a max flow
• Can construct capacities where the algorithm never terminates
• Can require many augmenting paths to terminate

• Today: clever augmenting paths
• Maximum-capacity augmenting path (“fattest path”)
• Shortest augmenting paths (“shortest path”)

Fattest Augmenting Path

• Maximum-capacity augmenting path

• Can find the fattest augmenting path in time 𝑂 𝑚 log 𝑚 in
several different ways

• Use a variant of Dijkstra or combine BFS & BinarySearch

Arbitrary Paths

• Assume integer capacities

• Value of maxflow: 𝑣∗

• Value of aug path: ≥ 1

• Flow remaining in 𝐺𝑓: ≤ 𝑣∗ − 1

• # of aug paths: ≤ 𝑣∗

Maximum-Capacity Path

• Assume integer capacities

• Value of maxflow: 𝑣∗

• Value of aug path:

• Flow remaining in 𝐺𝑓:

• # of aug paths:

Fattest Augmenting Path

Fattest Augmenting Path
• 𝑓∗ is a maximum flow with value 𝑣∗ = 𝑣𝑎𝑙 𝑓∗

• 𝑃 is a fattest augmenting s-t path with capacity 𝐵
• Key Claim: 𝐵 ≥ 𝑣∗

𝑚

s

2

3

4

5 t10

10

9

8

4

9

1062

Fattest Augmenting Path
• 𝑓∗ is a maximum flow with value 𝑣∗ = 𝑣𝑎𝑙 𝑓∗

• 𝑃 is a fattest augmenting s-t path with capacity 𝐵
• Key Claim: 𝐵 ≥ 𝑣∗

𝑚
• Proof:

Arbitrary Paths

• Assume integer capacities

• Value of maxflow: 𝑣∗

• Value of aug path: ≥ 1

• Flow remaining in 𝐺𝑓: ≤ 𝑣∗ − 1

• # of aug paths: ≤ 𝑣∗

Maximum-Capacity Path

• Assume integer capacities

• Value of maxflow: 𝑣∗

• Value of aug path:

• Flow remaining in 𝐺𝑓:

• # of aug paths:

Fattest Augmenting Path

Choosing Good Paths
• Last time: arbitrary augmenting paths

• If Ford-Fulkerson terminates, it has found a maximum flow

• Today: clever augmenting paths
• Maximum-capacity augmenting path (“fattest augmenting path”)

• ≤ 𝑚 ln 𝑣∗ augmenting paths (assuming integer capacities)
• 𝑂(𝑚2 ln 𝑛 ln 𝑣∗) total running time
• See KT for a faster variant (“fat-enough augmenting path”?)

• Shortest augmenting paths (“shortest augmenting path”)

Shortest Augmenting Path & Improvements

• Find the augmenting path with the fewest hops
• Can find shortest augmenting path in 𝑂(𝑚) time using BFS

• Theorem: for any capacities 𝑛𝑚/2 augmentations suffice
• Overall running time 𝑂 𝑚2𝑛
• Works for any capacities!

• Warning: the proof is challenging, so we will skip it

• Better Theorem: Max flow can be solved in 𝑂 𝑚𝑛 time
• You can use this fact for all future assignments/exams

Applications of Network Flow
a. Reductions between computational problems

Applications of Network Flow
• Algorithms for maximum flow can be used to solve:

• Bipartite Matching
• Image Segmentation
• Disjoint Paths
• Survey Design
• Matrix Rounding
• Auction Design
• Fair Division
• Project Selection
• Baseball Elimination
• Airline Scheduling
• …

Mechanics of Reductions

• Definition: a computational problem is
• a set of valid inputs 𝑿 and
• a set 𝑨(𝒙) of valid outputs for each 𝒙 ∈ 𝑿

• Example: integer maximum flow

Mechanics of Reductions

• Definition: a reduction is an efficient algorithm
that solves problem B using an algorithm that
solves problem A as a black-box

solver for A
(black-box)

valid input 𝑥
for problem A

valid output
𝑢 ∈ 𝐴 𝑥

Mechanics of Reductions

• Definition: a reduction is an efficient algorithm
that solves problem B using an algorithm that
solves problem A as a black-box

solver for A
(black-box)

valid input 𝑦
for problem B

valid output
𝑣 ∈ 𝐵 𝑦

valid input 𝑥
for problem A

valid output
𝑢 ∈ 𝐴 𝑥

Correctness of Reductions

solver for A
(black-box)

valid input 𝑦
for problem B

valid output
𝑣 ∈ 𝐵 𝑦

valid input 𝑥
for problem A

valid output
𝑢 ∈ 𝐴 𝑥

Running Time of Reductions

solver for A
(black-box)

valid input 𝑦
for problem B

valid output
𝑣 ∈ 𝐵 𝑦

valid input 𝑥
for problem A

valid output
𝑢 ∈ 𝐴 𝑥

Example: Flows and Cuts

solver for A
(black-box)

valid input 𝑦
for problem B

valid output
𝑣 ∈ 𝐵 𝑦

valid input 𝑥
for problem A

valid output
𝑢 ∈ 𝐴 𝑥

Example: Sorting and Median

solver for A
(black-box)

valid input 𝑦
for problem B

valid output
𝑣 ∈ 𝐵 𝑦

valid input 𝑥
for problem A

valid output
𝑢 ∈ 𝐴 𝑥

Algorithms & Data
Unit 8: Applications of Network Flow

a. Reductions between computational problems
b. Maximum cardinality bipartite matching

Maximum Bipartite Matching
• Input: bipartite graph 𝐺 = (𝑉, 𝐸) with 𝑉 = 𝐿 ∪ 𝑅
• Output: a matching of maximum size

• A matching 𝑀 ⊆ 𝐸 is a set of edges such that every
node 𝑣 is an endpoint of at most one edge in 𝑀

• Size = 𝑀

Models any problem where one type
of object is assigned to another type:
• doctors to hospitals
• jobs to processors
• advertisements to websites

Mechanics of Reductions

• Theorem: There is an efficient algorithm that solves
maximum bipartite matching (MBM) using an
algorithm that solves integer maximum s-t flow (MF)

solver for A
(black-box)

valid input 𝑦
for problem B

valid output
𝑣 ∈ 𝐵 𝑦

valid input 𝑥
for problem A

valid output
𝑢 ∈ 𝐴 𝑥

Step 1: Transform the Input

valid input 𝐺
for MBM

valid network
𝐺′ for MF

Step 1: Transform the Input

valid input 𝐺
for MBM

valid network
𝐺′ for MF

Step 2: Receive the Output

Red arrow means 𝑓′ 𝑒 = 1
Black arrow means 𝑓′(𝑒) = 0

solver
for MF

(black-box)

valid network
𝐺′ for MF

valid MF 𝑓′ for
network 𝐺′

Step 3: Transform the Output

valid MBM 𝑀
for graph 𝐺

valid MF 𝑓′ for
network 𝐺′

Reduction Recap
• Step 1: Transform the Input

• Given bipartite graph 𝐺 = (𝐿, 𝑅, 𝐸), produce flow
network 𝐺’ = (𝑉, 𝐸, {𝑐(𝑒)}, 𝑠, 𝑡) by:

• orienting edges 𝑒 from 𝐿 to 𝑅
• adding a node 𝑠 with edges from 𝑠 to every node in 𝐿
• adding a node 𝑡 with edges from every node in 𝑅 to 𝑡
• setting all capacities to 1

• Step 2: Receive the Output
• Find an integer maximum 𝑠-𝑡 flow 𝑓’ in 𝐺’

• Step 3: Transform the Output
• Given an integer 𝑠-𝑡 flow 𝑓′ 𝑒 let 𝑀 be the set of edges

𝑒 going from 𝐿 to 𝑅 that have 𝑓′(𝑒) = 1

Correctness

• Need to show:
• (1) This algorithm returns a matching
• (2) This matching is a maximum cardinality matching

Correctness

• This algorithm returns a matching

Correctness

• Claim: 𝐺 has a matching of cardinality 𝑘 if and only
if 𝐺’ has an 𝑠-𝑡 flow of value 𝑘

Correctness

• Claim: 𝐺 has a matching of cardinality 𝑘 if and only
if 𝐺’ has an 𝑠-𝑡 flow of value 𝑘

Running Time

• Need to analyze the time for:
• (1) Producing 𝐺’ given 𝐺
• (2) Finding a maximum flow in 𝐺’
• (3) Producing 𝑀 given 𝐺’

Maximum Bipartite Matching Summary

• Can solve max bipartite matching in time
𝑂(𝑛𝑚) using Ford-Fulkerson

• Improvement for maximum flow gives improvement
for maximum bipartite matching!

Solve maximum 𝑠-𝑡 flow in a graph with 𝑛 + 2
nodes and 𝑚 + 𝑛 edges and 𝑐(𝑒) = 1 in time 𝑇

Solve maximum bipartite matching in a graph with
𝑛 nodes and 𝑚 edges in time 𝑇 + 𝑂(𝑚 + 𝑛)

Mechanics of Reductions

• Definition: a reduction is an efficient algorithm
that solves problem B using an algorithm that
solves problem A as a black-box

solver for A
(black-box)

valid input 𝑦
for problem B

valid output
𝑣 ∈ 𝐵 𝑦

valid input 𝑥
for problem A

valid output
𝑢 ∈ 𝐴 𝑥

