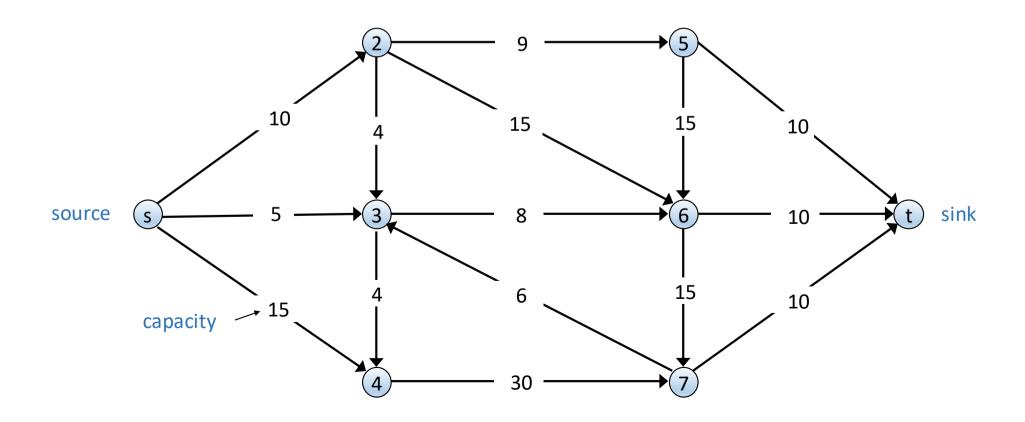
Network Flow

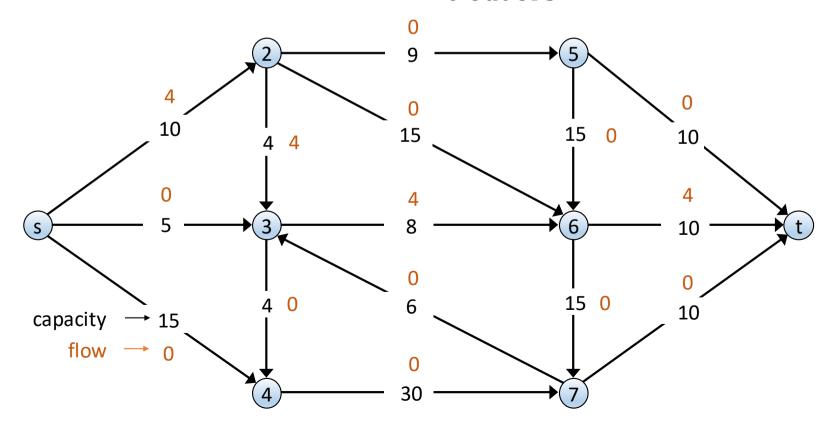
Flow Networks

- Directed graph G = (V, E)
- Two special nodes: source s and sink t
- Edge capacities c(e)
- Assume strongly connected (for simplicity)



Flows

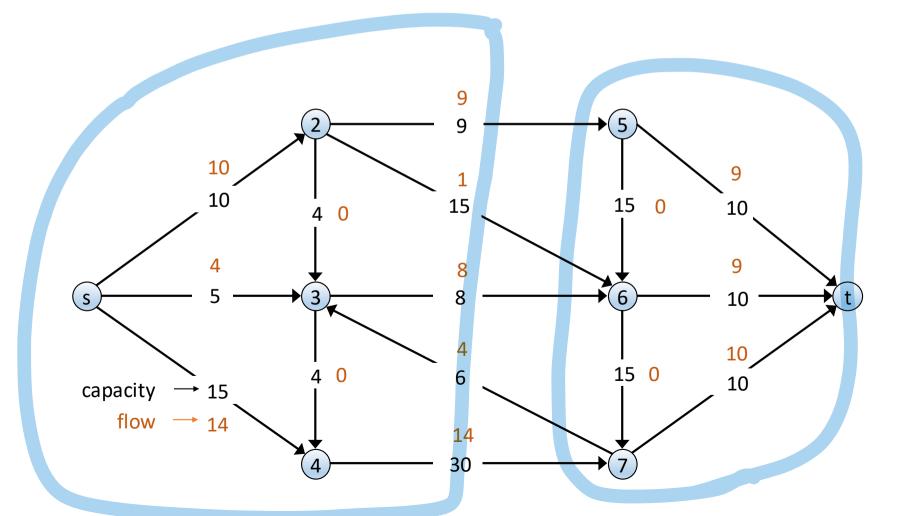
- An s-t flow is a function f(e) such that
 - For every $e \in E$, $0 \le f(e) \le c(e)$ (capacity)
 - For every $v \in V \setminus \{s, t\}$, $\sum_{e \text{ in to } v} f(e) = \sum_{e \text{ out of } v} f(e)$ (conservation)
- The value of a flow is $val(f) = \sum_{e \text{ out of } s} f(e)$



Maximum Flow Problem

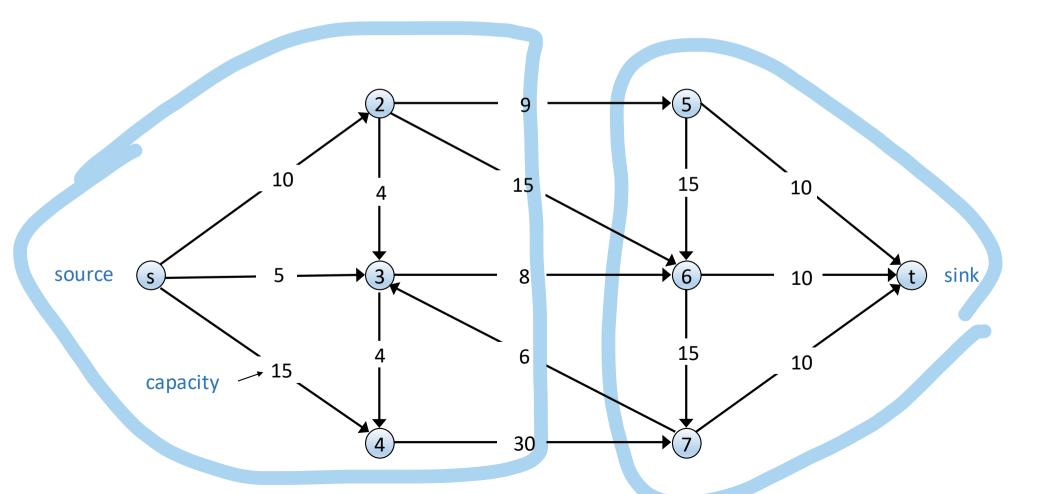
• Given G = (V,E,s,t,{c(e)}), find an s-t flow of maximum value

• value(f) =
$$10 + 4 + 14 = 28$$



Cuts

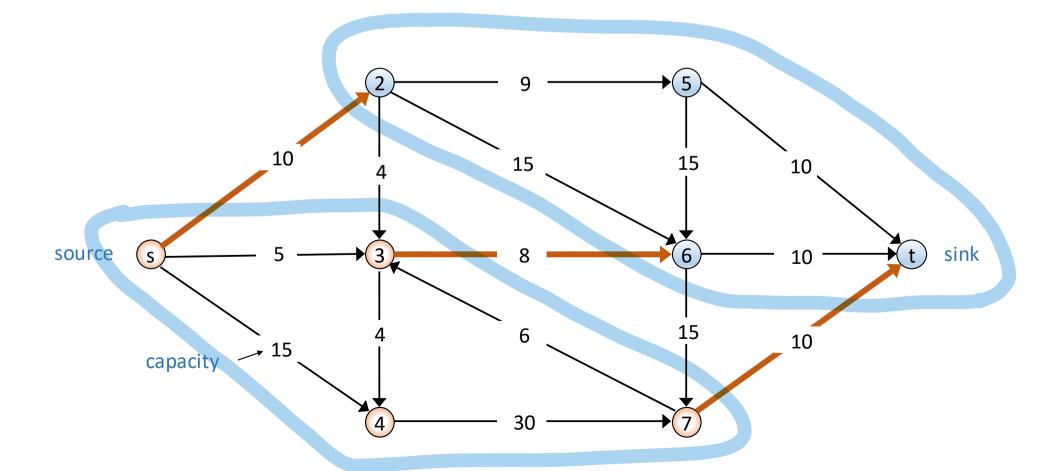
- An s-t cut is a partition (A, B) of V with $s \in A$ and $t \in B$
- The capacity of a cut (A,B) is $cap(A,B) = \sum_{e \text{ out of } A} c(e)$



Minimum Cut problem

• Given G = (V,E,s,t,{c(e)}), find an s-t cut of minimum capacity

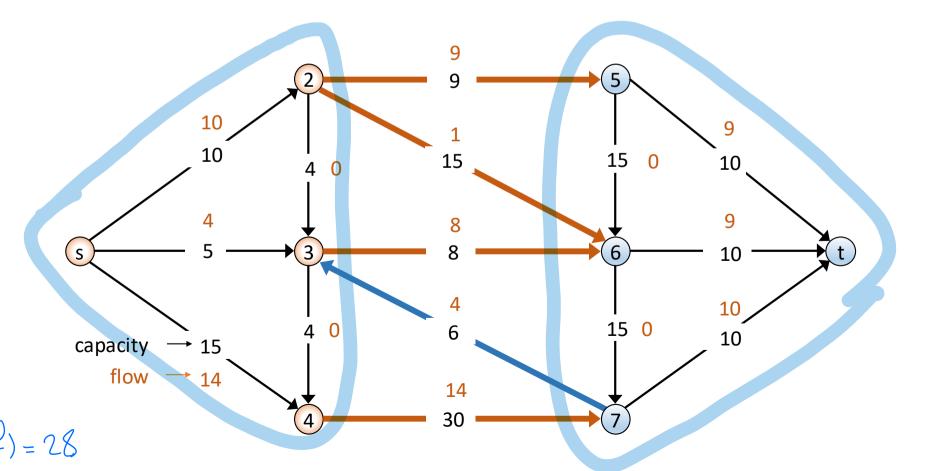
• cap(
$$\{s,3,4,7\}$$
, $\{2,5,6,t\}$) = 28



Flows & Cuts: Closely Related

- Fact: If f is any s-t flow and (A,B) is any s-t cut, then the net flow across (A,B) is equal to the amount leaving s
- The net flow across any s-t cut is the same!

$$\sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e) = val(f)$$



Cuts & Flows

• Let f be any s-t flow and (A, B) any s-t cut,

$$val(f) \leq cap(A, B) = \sum_{e \text{ out } fA}^{Ce}$$
 $val(f) = \sum_{e \text{ out } fA}^{Ce}$
 $val(f) \leq cap(A, B) = \sum_{e \text{ out } fA}^{Ce}$
 $val(f) \leq cap(A, B) = \sum_{e \text{ out } fA}^{Ce}$
 $val(f) \leq cap(A, B) = \sum_{e \text{ out } fA}^{Ce}$
 $val(f) \leq cap(A, B) = \sum_{e \text{ out } fA}^{Ce}$
 $val(f) \leq cap(A, B) = \sum_{e \text{ out } fA}^{Ce}$

True or False?

• The max flow always has an edge e leaving the source s such that f(e) = c(e) (is **saturated**)?

The max flow always has an edge e such that f(e) = c(e)
 (is saturated)?

True: Take any path from Stat

sincrease the flow over

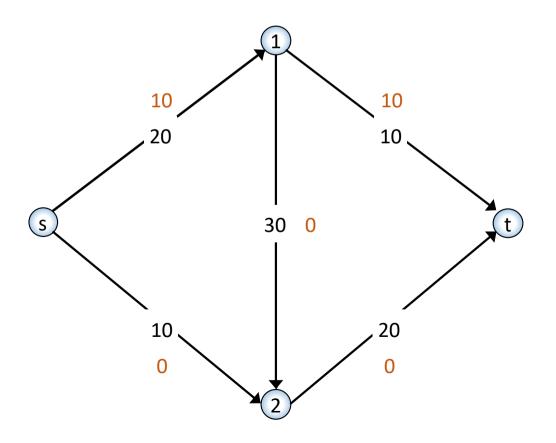
the path.

Network Flow

- a. Key concepts and problem definitions
- b. Augmenting paths nd greedy max flow

Augmenting Paths

• Given a network $G = (V, E, s, t, \{c(e)\})$ and a flow f, an augmenting path P is a simple $s \to t$ path such that f(e) < c(e) for every edge $e \in P$



Are these augmenting paths?

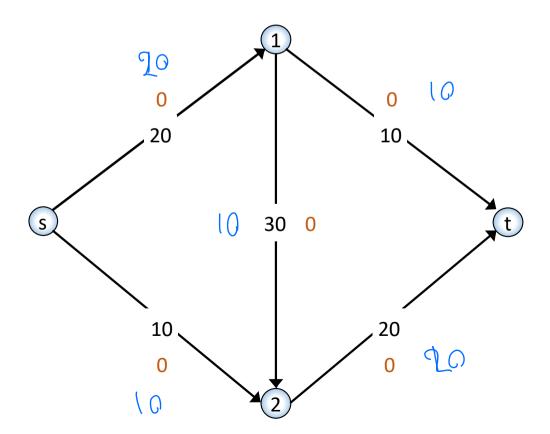
$$\times$$
 s - 1 - t

$$\sqrt{\bullet}$$
 s-2-t

$$\sqrt{\cdot}$$
 s - 1 - 2 - t

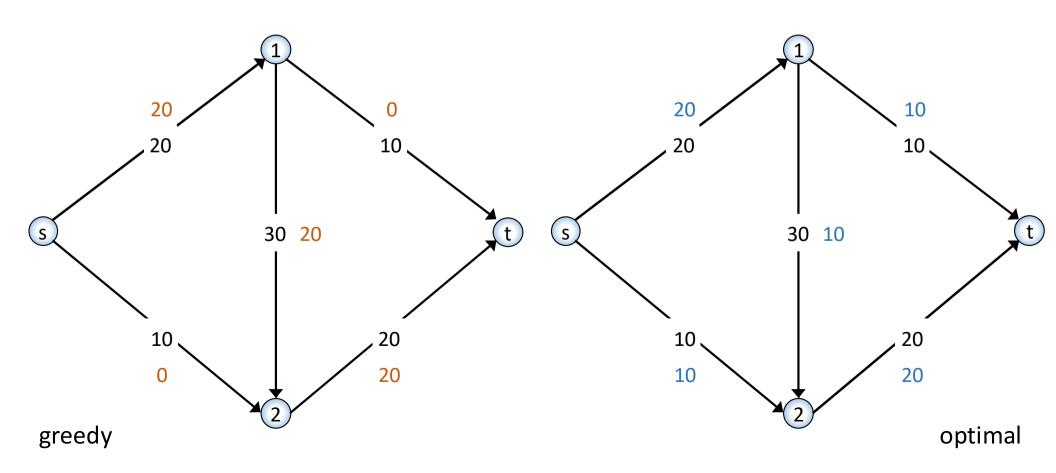
Greedy Max Flow

- Start with f(e) = 0 for all edges $e \in E$
- Find an augmenting path P & increase flow by max amount
- Repeat until you get stuck



Does Greedy Work?

- Greedy gets stuck before finding a max flow
- How can we get from our solution to the max flow?

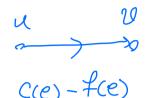


Residual Graphs

- Original edge: $e = (u, v) \in E$.
 - Flow f(e), capacity c(e)
 - Residual capacity: c(e) f(e)

Residual edge

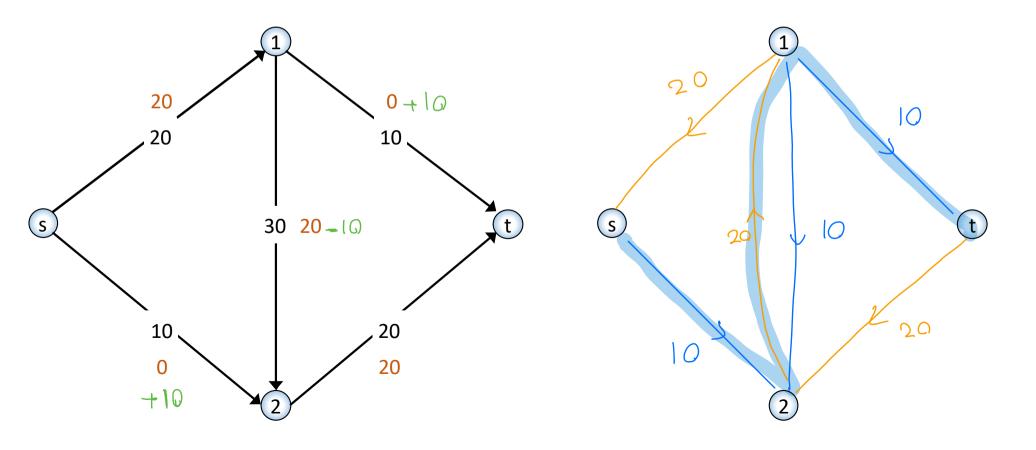
- Allows "undoing" flow
- e = (u, v) and $e^R = (v, u)$.
- $cap(e^R) = f(e)$



- Residual graph $G_f = (V, E_f)$
 - Original edges with positive residual capacity & residual edges with positive flow
 - $E_f = \{e : f(e) < c(e)\} \cup \{e^R : f(e) > 0\}.$

Ford-Fulkerson Algorithm

- $\begin{array}{c} +\chi & -\chi \\ +\chi & & \\ -\chi & & \\ -\chi & & \\ & & \\ \end{array}$
- Start with f(e) = 0 for all edges $e \in E$
- Find an augmenting path P in the residual graph
- Repeat until you get stuck



Augmenting Paths in Residual Graphs

- Let G_f be a residual graph
- Let P be an augmenting path in the residual graph
- Fact: $f' = Augment(G_f, P)$ is a valid flow

```
Augment(G_f, P)

b \leftarrow the minimum capacity of an edge in P

for e \in P

if (e is an original edge):

f(e) \leftarrow f(e) + b

else:

f(e^R) \leftarrow f(e^R) - b

return f
```

Ford-Fulkerson Algorithm

```
\label{eq:fordFulkerson} \begin{split} &\text{FordFulkerson}\left(G,s,t,\{c(e)\}\right) \\ &\text{for } e \in E \colon f(e) \leftarrow 0 \\ &G_f \text{ is the residual graph} \end{split} \label{eq:while} \\ &\text{while } (\text{there is an } s\text{-t path P in } G_f) \\ &\quad f \leftarrow \text{Augment}(G_f,P) \\ &\quad \text{update } G_f \end{split} \text{return } f
```

```
Augment(G_f, P)

b \leftarrow the minimum capacity of an edge in P

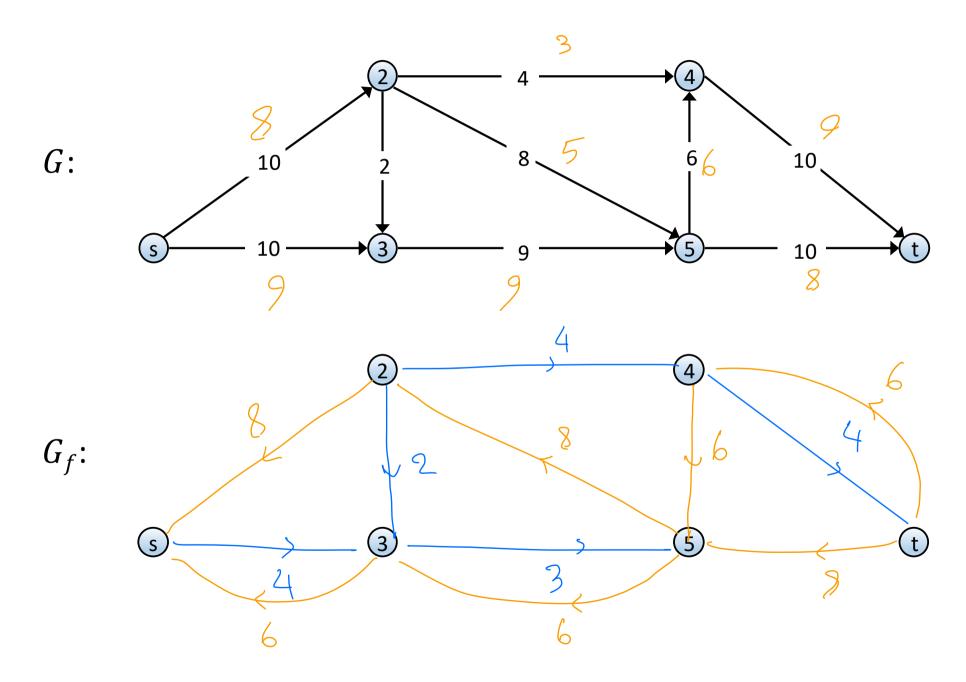
for e \in P

if (e is an original edge): f(e) \leftarrow f(e) + b

else: f(e^R) \leftarrow f(e^R) - b

return f
```

Ford-Fulkerson Demo



What do we want to prove?

Running Time of Ford-Fulkerson

• For integer capacities, $\leq val(f^*)$ augmentation steps

- Can perform each augmentation step in O(m) time
 - find augmenting path in O(m)
 - augment the flow along path in O(n)
 - update the residual graph along the path in O(n)
- ullet For integer capacities, FF runs in $Oig(m \cdot val(f^*)ig)$ time
 - O(mn) time if all capacities are $c_e=1$
 - $O(mnC_{\max})$ time for any integer capacities $\leq C_{\max}$
 - Problematic when capacities are large—more on this later!

Network Flow

- a. Key concepts and problem definitions
- b. Augmenting paths and greedy max flow
- c. The Ford-Fulkerson Algorithm
- d. Optimality of Ford-Fulkerson and Duality

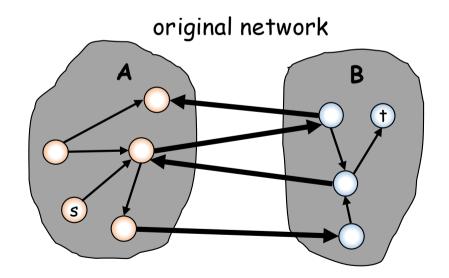
• Theorem: f is a maximum s-t flow if and only if there is no augmenting s-t path in G_f

- Strong MaxFlow-MinCut Duality: The value of the max s-t flow equals the capacity of the min s-t cut
- We'll prove that the following are equivalent for all f
 - 1. There exists a cut (A, B) such that val(f) = cap(A, B)
 - 2. Flow f is a maximum flow
 - 3. There is no augmenting path in G_f

- Theorem: the following are equivalent for all f
 - 1. There exists a cut (A, B) such that val(f) = cap(A, B)
 - 2. Flow f is a maximum flow
 - 3. There is no augmenting path in G_f

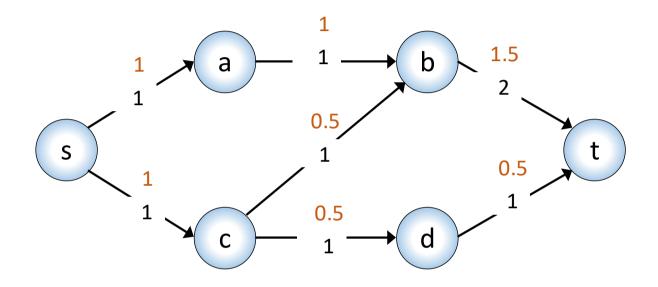
- (3 \rightarrow 1) If there is no augmenting path in G_f , then there is a cut (A,B) such that val(f)=cap(A,B)
 - Let A be the set of nodes reachable from s in G_f
 - Let B be all other nodes

- (3 \rightarrow 1) If there is no augmenting path in G_f , then there is a cut (A,B) such that val(f)=cap(A,B)
 - Let A be the set of nodes reachable from s in G_f
 - Let B be all other nodes
 - **Key observation:** no edges in G_f go from A to B
- If e is $A \to B$, then f(e) = c(e)
- If e is $B \to A$, then f(e) = 0



Ask the Audience

• Is this a maximum flow?



- Is there an integer maximum flow?
- Does every graph with integer capacities have an integer maximum flow?

Summary

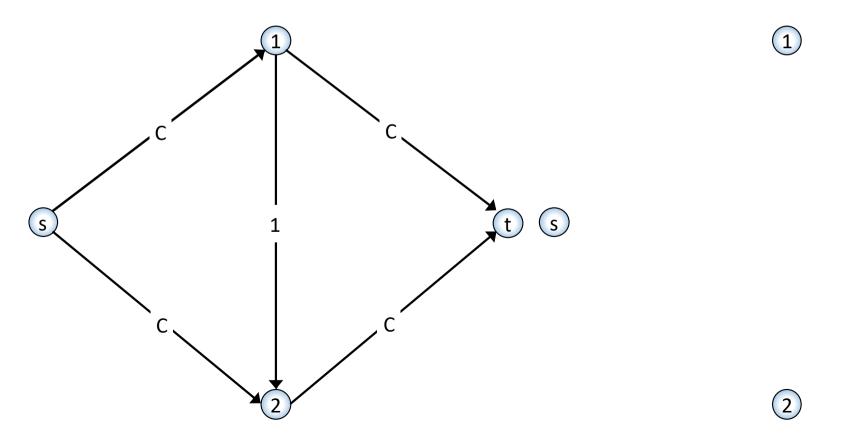
- The Ford-Fulkerson Algorithm solves maximum s-t flow
 - Running time $O(m \cdot val(f^*))$ in networks with integer capacities
- Strong MaxFlow-MinCut Duality: max flow = min cut
 - The value of the maximum s-t flow equals the capacity of the minimum s-t cut
 - If f^* is a maximum s-t flow, then the set of nodes reachable from s in G_{f^*} gives a minimum cut
 - Given a max-flow, can find a min-cut in time O(n+m)
- Every graph with integer capacities has an integer maximum flow
 - Ford-Fulkerson will return an integer maximum flow

Network Flow

- a. Key concepts and problem definitions
- b. Augmenting paths and greedy max flow
- c. The Ford-Fulkerson Algorithm
- d. Optimality of Ford-Fulkerson and Duality
- e. Choosing good augmenting paths

Speeding Up Ford-Fulkerson

- Start with f(e) = 0 for all edges $e \in E$
- Find an augmenting path P in the residual graph G_f
- Repeat until you get stuck



Choosing Good Augmenting Paths

- Last time: arbitrary augmenting paths
 - If Ford-Fulkerson terminates, then we have found a max flow
 - Can construct capacities where the algorithm never terminates
 - Can require many augmenting paths to terminate

- Today: clever augmenting paths
 - Maximum-capacity augmenting path ("fattest path")
 - Shortest augmenting paths ("shortest path")

Maximum-capacity augmenting path

- Can find the fattest augmenting path in time $O(m \log C)$ in several different ways
 - Variants of Prim's or Kruskal's MST algorithm
 - BFS + binary search

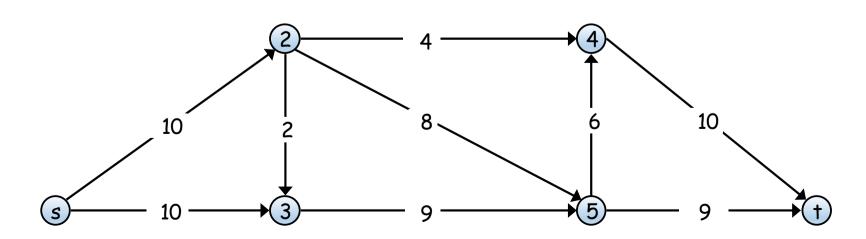
Arbitrary Paths

- Assume integer capacities
- Value of maxflow: v^*
- Value of aug path: ≥ 1
- Flow remaining in G_f : $\leq v^* 1$
- # of aug paths: $\leq v^*$

Maximum-Capacity Path

- Assume integer capacities
- Value of maxflow: v^*
- Value of aug path:
- Flow remaining in G_f :
- # of aug paths:

- f^* is a maximum flow with value $v^* = val(f^*)$
- P is a fattest augmenting s-t path with capacity B
- Key Claim: $B \ge \frac{v^*}{m}$



- f^* is a maximum flow with value $v^* = val(f^*)$
- P is a fattest augmenting s-t path with capacity B
- Key Claim: $B \ge \frac{v^*}{m}$
- Proof:

Arbitrary Paths

- Assume integer capacities
- Value of maxflow: v^*
- Value of aug path: ≥ 1
- Flow remaining in G_f : $\leq v^* 1$
- # of aug paths: $\leq v^*$

Maximum-Capacity Path

- Assume integer capacities
- Value of maxflow: v^*
- Value of aug path:
- Flow remaining in G_f :
- # of aug paths:

Choosing Good Paths

- Last time: arbitrary augmenting paths
 - If Ford-Fulkerson terminates, it has found a maximum flow
- Today: clever augmenting paths
 - Maximum-capacity augmenting path ("fattest augmenting path")
 - $\leq m$ augmenting paths (assuming integer capacities)
 - $O(m^2 \ln C)$ total running time
 - Shortest augmenting paths ("shortest augmenting path")

Shortest Augmenting Path & Improvements

- Find the augmenting path with the fewest hops
 - Can find shortest augmenting path in O(m) time using BFS
- Theorem: for any capacities nm/2 augmentations suffice
 - Overall running time $O(m^2n)$
 - Works for any capacities!
- Warning: the proof is challenging, so we will skip it
- Better Theorem: Max flow can be solved in O(mn) time
 - You can use this fact for all future assignments/exams

Choosing Good Augmenting Paths

- Last time: arbitrary augmenting paths
 - If Ford-Fulkerson terminates, then we have found a max flow
 - Can construct capacities where the algorithm never terminates
 - Can require many augmenting paths to terminate

- Today: clever augmenting paths
 - Maximum-capacity augmenting path ("fattest path")
 - Shortest augmenting paths ("shortest path")

Maximum-capacity augmenting path

- Can find the fattest augmenting path in time $O(m \log m)$ in several different ways
 - Use a variant of Dijkstra or combine BFS & BinarySearch

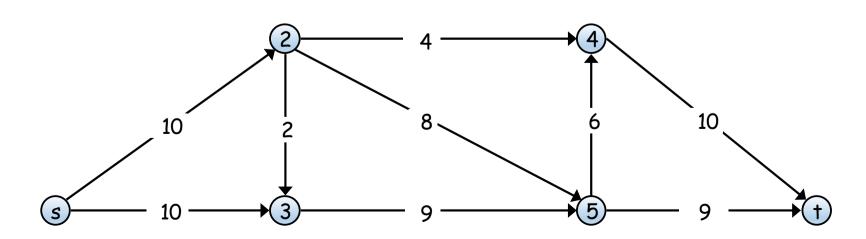
Arbitrary Paths

- Assume integer capacities
- Value of maxflow: v^*
- Value of aug path: ≥ 1
- Flow remaining in G_f : $\leq v^* 1$
- # of aug paths: $\leq v^*$

Maximum-Capacity Path

- Assume integer capacities
- Value of maxflow: v^*
- Value of aug path:
- Flow remaining in G_f :
- # of aug paths:

- f^* is a maximum flow with value $v^* = val(f^*)$
- P is a fattest augmenting s-t path with capacity B
- Key Claim: $B \ge \frac{v^*}{m}$



- f^* is a maximum flow with value $v^* = val(f^*)$
- P is a fattest augmenting s-t path with capacity B
- Key Claim: $B \ge \frac{v^*}{m}$
- Proof:

Arbitrary Paths

- Assume integer capacities
- Value of maxflow: v^*
- Value of aug path: ≥ 1
- Flow remaining in G_f : $\leq v^* 1$
- # of aug paths: $\leq v^*$

Maximum-Capacity Path

- Assume integer capacities
- Value of maxflow: v^*
- Value of aug path:
- Flow remaining in G_f :
- # of aug paths:

Choosing Good Paths

- Last time: arbitrary augmenting paths
 - If Ford-Fulkerson terminates, it has found a maximum flow
- Today: clever augmenting paths
 - Maximum-capacity augmenting path ("fattest augmenting path")
 - $\leq m \ln v^*$ augmenting paths (assuming integer capacities)
 - $O(m^2 \ln n \ln v^*)$ total running time
 - See KT for a faster variant ("fat-enough augmenting path"?)
 - Shortest augmenting paths ("shortest augmenting path")

Shortest Augmenting Path & Improvements

- Find the augmenting path with the fewest hops
 - Can find shortest augmenting path in O(m) time using BFS
- Theorem: for any capacities nm/2 augmentations suffice
 - Overall running time $O(m^2n)$
 - Works for any capacities!
- Warning: the proof is challenging, so we will skip it
- Better Theorem: Max flow can be solved in O(mn) time
 - You can use this fact for all future assignments/exams

Applications of Network Flow

a. Reductions between computational problems

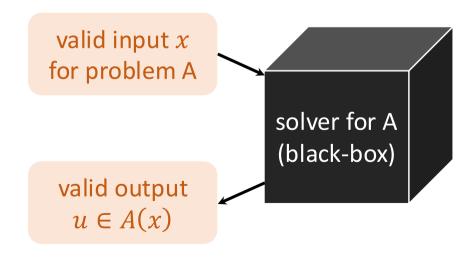
Applications of Network Flow

- Algorithms for maximum flow can be used to solve:
 - Bipartite Matching
 - Image Segmentation
 - Disjoint Paths
 - Survey Design
 - Matrix Rounding
 - Auction Design
 - Fair Division
 - Project Selection
 - Baseball Elimination
 - Airline Scheduling
 - ...

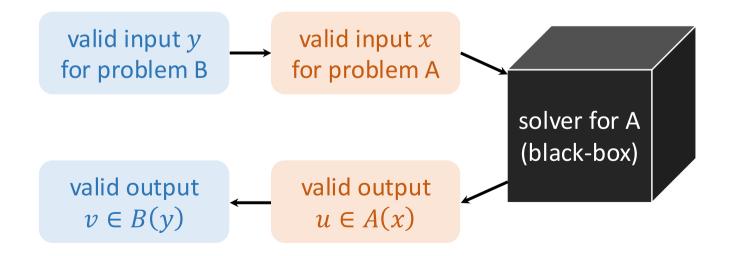
- **Definition:** a computational **problem** is
 - a set of valid inputs X and
 - a set A(x) of valid outputs for each $x \in X$

• Example: integer maximum flow

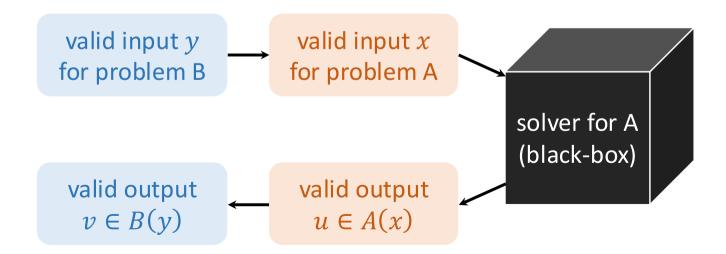
 Definition: a reduction is an efficient algorithm that solves problem B using an algorithm that solves problem A as a black-box



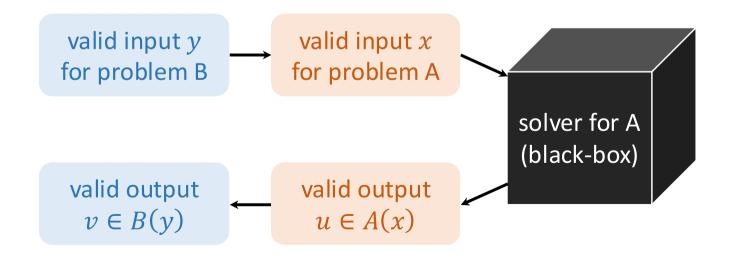
 Definition: a reduction is an efficient algorithm that solves problem B using an algorithm that solves problem A as a black-box



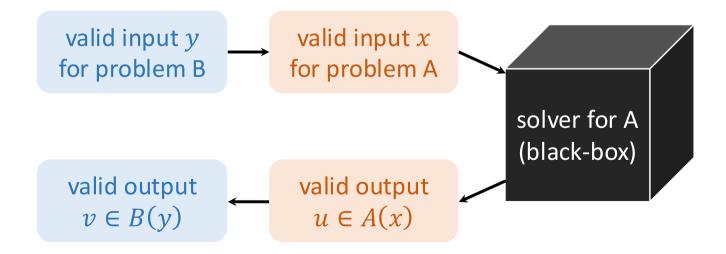
Correctness of Reductions



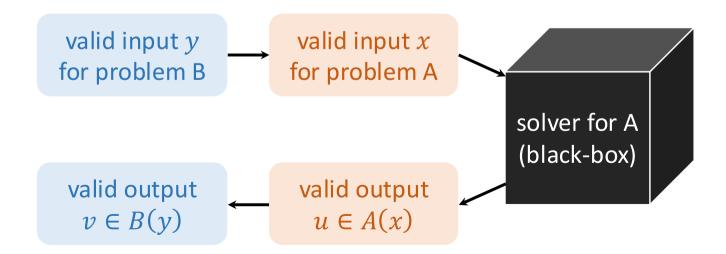
Running Time of Reductions



Example: Flows and Cuts



Example: Sorting and Median



Algorithms & Data

Unit 8: Applications of Network Flow

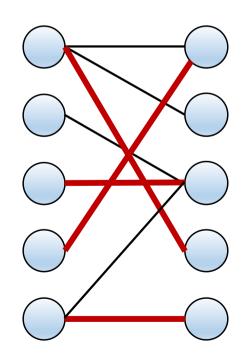
- a. Reductions between computational problems
- b. Maximum cardinality bipartite matching

Maximum Bipartite Matching

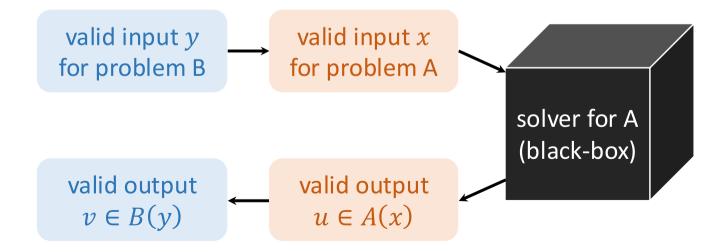
- Input: bipartite graph G = (V, E) with $V = L \cup R$
- Output: a matching of maximum size
 - A matching $M \subseteq E$ is a set of edges such that every node v is an endpoint of at most one edge in M
 - Size = |M|

Models any problem where one type of object is assigned to another type:

- doctors to hospitals
- jobs to processors
- advertisements to websites



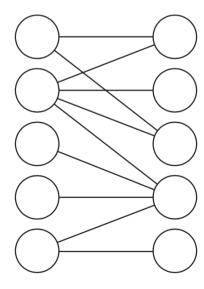
• **Theorem:** There is an efficient algorithm that solves maximum bipartite matching (MBM) using an algorithm that solves integer maximum s-t flow (MF)



Step 1: Transform the Input

valid input G for MBM

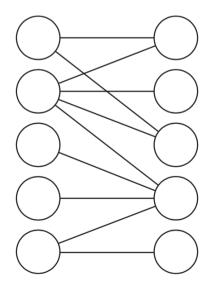
valid network G' for MF

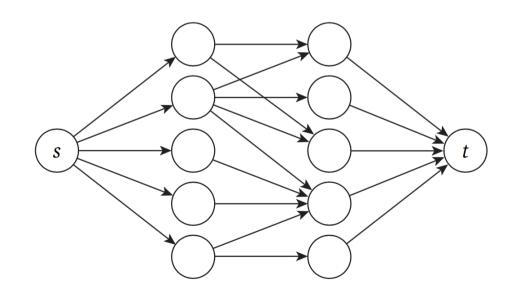


Step 1: Transform the Input

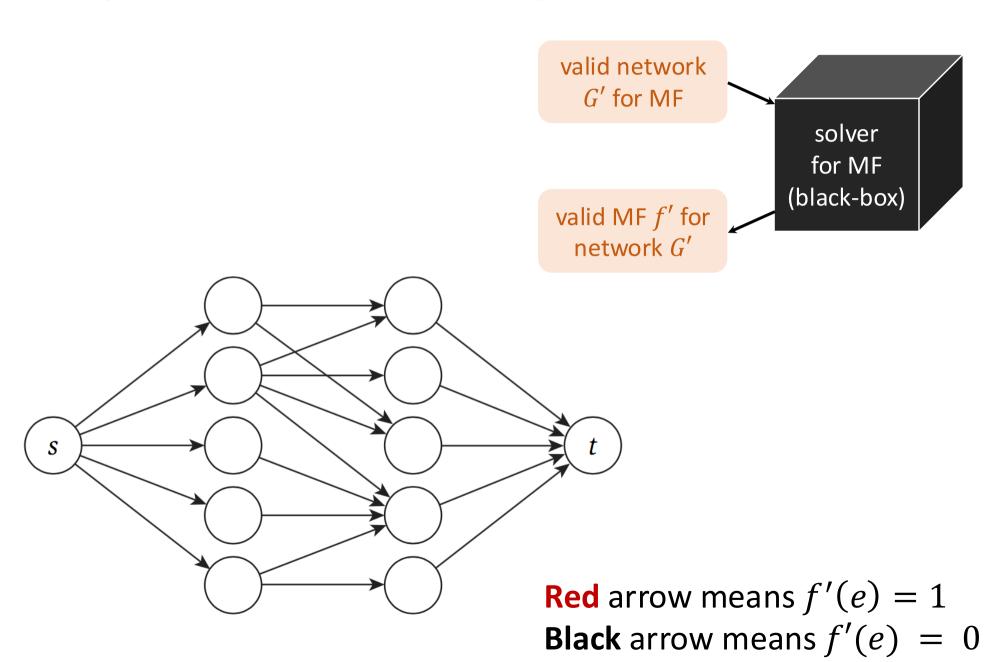
valid input G for MBM

valid network G' for MF





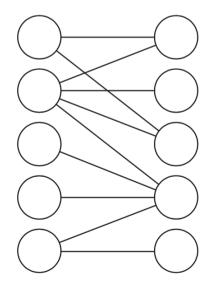
Step 2: Receive the Output

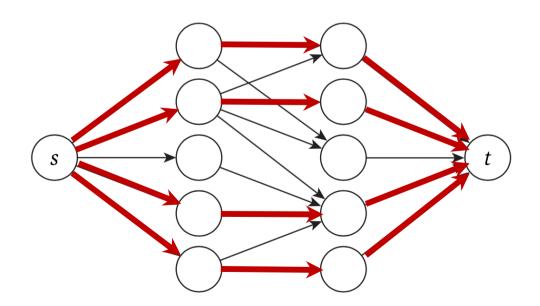


Step 3: Transform the Output

valid MBM M for graph G

valid MF f' for network G'



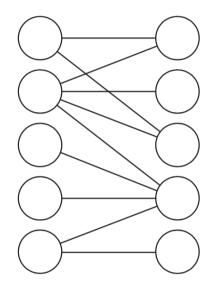


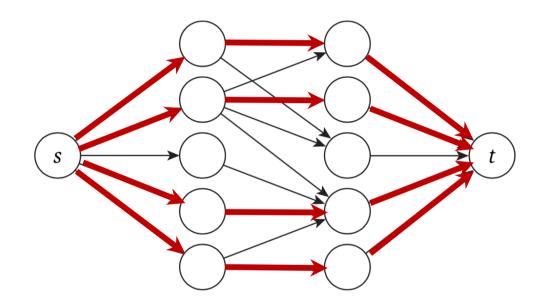
Reduction Recap

- Step 1: Transform the Input
 - Given bipartite graph G = (L, R, E), produce flow network $G' = (V, E, \{c(e)\}, s, t)$ by:
 - orienting edges e from L to R
 - adding a node s with edges from s to every node in L
 - adding a node t with edges from every node in R to t
 - setting all capacities to 1
- Step 2: Receive the Output
 - Find an integer maximum s-t flow f' in G'
- Step 3: Transform the Output
 - Given an integer s-t flow f'(e) let M be the set of edges e going from L to R that have f'(e) = 1

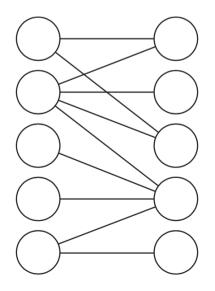
- Need to show:
 - (1) This algorithm returns a matching
 - (2) This matching is a maximum cardinality matching

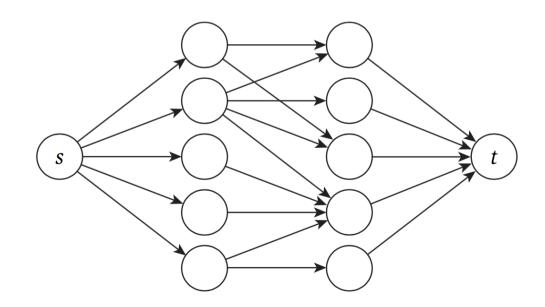
• This algorithm returns a matching



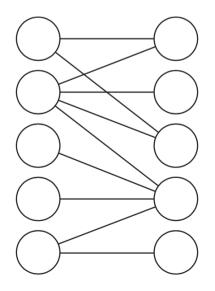


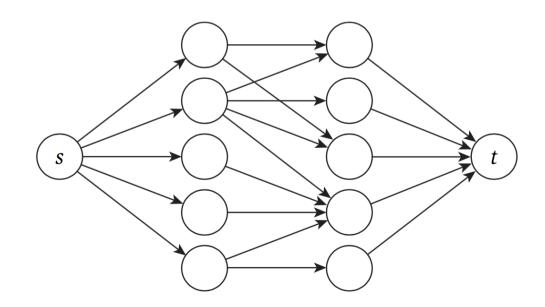
 Claim: G has a matching of cardinality k if and only if G' has an s-t flow of value k





 Claim: G has a matching of cardinality k if and only if G' has an s-t flow of value k





Running Time

- Need to analyze the time for:
 - (1) Producing *G'* given *G*
 - (2) Finding a maximum flow in G'
 - (3) Producing *M* given *G*'

Maximum Bipartite Matching Summary

Solve maximum s-t flow in a graph with n+2 nodes and m+n edges and c(e)=1 in time T

Solve maximum bipartite matching in a graph with n nodes and m edges in time T + O(m + n)

- Can solve max bipartite matching in time O(nm) using Ford-Fulkerson
 - Improvement for maximum flow gives improvement for maximum bipartite matching!

 Definition: a reduction is an efficient algorithm that solves problem B using an algorithm that solves problem A as a black-box

