Network Flow

Flow Networks

 Directed graph G = (I/, E)

* Two special nodes: source s and sink £

* Edge capacities c(e)

* Assume strongly connected (for simplicity)

/@\ 9 >®\
10 4 15 15 10
v \‘v
source 5 —0@\ 8 > 6) 10 sink
\ ; 3 e y
capacity — 15
\ |
@ 30 >

Flows

* An s-t flow is a function f(e) such that
* Foreverye € E,0 < f(e) < c(e) (capacity)
* Foreveryv € V\{s,t}, Zeintovf(€) = 2eoutorr f(€) (conservation)

* The value of aflowisval(f) = X, qutors f(€)

0
2 9 »(5
) \) 0
10 4 4 15 15 0 10

4 0 6 15 0 10

capacity — 15
flow 0
). 4 O). 4
4 30 >

Maximum Flow Problem

* Given G =(V,E,s,t,{c(e)}), find an s-t flow of maximum value

e value(f) = 0+4 14 <29

9
2 9 »(5

N \ : o

10 40 15 15 0 10

4 | 8 \‘v 9

5 —(3) 8 >(6) 10
\ i .
4 0 6 15 0 10

capacity — 15
flow — 14
4 30 >

Cuts

* Ans-t cutis a partition (4,B) of V withs € Aandt € B

* The capacity of a cut (A,B) is cap(A4,B) = Y., outof 4 €(€)

source

capacity — 15

A
/z

10 sink

Minimum Cut problem

* Given G = (V,E,s,t,{c(e)}), find an s-t cut of minimum capacity

¢ Cap({51314l7}l {21516)t}) = (2‘8

AN

5
5
6

10 10

1
| \
source 5 ——b& 8 _><>7 10 sink
\ ; ; e o

4 30 >

val (92 28

Flows & Cuts: Closely Related

* Fact: If f is any s-t flow and (4, B) is any s-t cut, then the
net flow across (4, B) is equal to the amount leaving s

* The net flow across any s-t cut

is the same! z fle) = Z f(e) = val(f)
e out of A einto A
9
10 1 9
10 40 15 15 0 10
4 v 8 v 9
4 10

capacity — 15

flow =32 14 "\

10
M

Cuts & Flows

* Let f be anys-t flow and (A4, B) any s-t cut,

val(f) < cap(4,B) -). Ce
Evlier Qouk‘ﬁ/-\
Fact
dol (— Z ﬁ
e_odrﬁﬂ € infa fl
<3 G-
ek A

True or False?

 The max flow always has an edge e leaving the source s
such that f(e) = c(e) (is saturated)?

False S +

 The max flow always has an edge e such that f(e) = c(e)

(is saturated)?
Twe . Tale a/ua (P”‘M\ fvom 3 &

S ;%/o A ay € ol increcse 4’96 E\GW“W
9 =

Network Flow
a. Key concepts and problem definitions
b. Augmenting paths nd greedy max flow

Augmenting Paths

* Givenanetwork G = (V,E,s,t,{c(e)}) and a flow f, an
augmenting path P is a simple s = t path such that
f(e) <c(e)foreveryedgee € P

: * Are these augmenting paths?
10 10 e*s—1-t

20 10 e s—2—t

\ e s—1-2-t
30 0 /@

10 20

o\@/o

Greedy Max Flow

e Start with f(e) = Oforalledgese € E
* Find an augmenting path P & increase flow by max amount
e Repeat until you get stuck

Does Greedy Work?

* Greedy gets stuck before finding a max flow
 How can we get from our solution to the max flow?

1 1
20 0 20 10
20 10\ 20 10
30 20 /@ 30 10

10 20 10 20
0 20 10 20

greedy optimal

Residual Graphs gl il resilod g

e Original edge: e = (u,v) € E. A 9 U u
g g (.) ' S
* Flow f(e), capacity c(e) CC@B 7,
* Residual capacity: c(e) — f(e) Ced~He)
e R i
emdualedg{c{e o 3 1 "
* Allows “undoing” flow o : - o P
e e =(u,v)and ek = (v,). fCQB

» cap(e®) =fle)

* Residual graph Gy = (v, Ef)

* Original edges with positive residual capacity & residual edges with
positive flow

« E; ={e: f(e) < c(e)} U {ef: f(e) > 0}

Ford-Fulkerson Algorithm

e Start with f(e) = O foralledgese € E

* Find an augmenting path P in the residual graph
* Repeat until you get stuck

1
20 0+ 10

20

10
0
=+1

N

10

20
20

AN

30 20-10) /@ @

+% <
o-);—o——}"
g
\o_ﬁ__
1O
L o

Augmenting Paths in Residual Graphs

* Let Gf be aresidual graph

* Let P be an augmenting path in the residual graph
* Fact: f° = Augment(Gy, P) is a valid flow

Augment (G¢, P)
b < the minimum capacity of an edge in P
for e € P
if (e is an original edge):
f(e) « f£f(e) + b
else:
f(ef) « £(ef) - b
return f

Ford-Fulkerson Algorithm

FordFulkerson (G,s,t, {c(e) })
for e € E: f(e) « 0
G¢ 1s the residual graph

while (there is an s-t path P in Gy)
f <« Augment (G¢,P)
update G

return £

Augment (G¢, P)
b < the minimum capacity of an edge in P
for e € P
if (e is an original edge): f(e) « f(e) + b
else: f(e?f) « f£(ef) - b
return f

Ford-Fulkerson Demo

AT

G: 10 2

8 6 10
9\}‘(5)7 10>’®
AY

What do we want to prove?

Running Time of Ford-Fulkerson

* For integer capacities, < val(f™*) augmentation steps

* Can perform each augmentation step in O(m) time
* find augmenting path in O(m)
« augment the flow along path in O(n)
 update the residual graph along the path in 0(n)

» For integer capacities, FF runs in O(m - val(f*)) time
« O(mn) time if all capacities arec, = 1
¢ 0(mnCyay) time for any integer capacities < Cpyax
* Problematic when capacities are large—more on this later!

Network Flow

a. Key concepts and problem definitions
Augmenting paths and greedy max flow
The Ford-Fulkerson Algorithm
Optimality of Ford-Fulkerson and Duality

o 0 T

Optimality of Ford-Fulkerson

* Theorem: f is a maximum s-t flow if and only if there is no
augmenting s-t path in Gy

* Strong MaxFlow-MinCut Duality: The value of the max s-t
flow equals the capacity of the min s-t cut

* We'll prove that the following are equivalent for all f

1. There exists a cut (4, B) such that val(f) = cap(4, B)
2. Flow f is @ maximum flow

3. There is no augmenting path in G¢

Optimality of Ford-Fulkerson

* Theorem: the following are equivalent for all f
1. There exists a cut (4, B) such that val(f) = cap(4, B)
2. Flow f is @ maximum flow
3. There is no augmenting path in G¢

Optimality of Ford-Fulkerson

* (3 — 1) If there is no augmenting path in Gy, then thereis a
cut (4, B) such that val(f) = cap(4, B)
* Let A be the set of nodes reachable from s in G
e Let B be all other nodes

Optimality of Ford-Fulkerson

* (3 — 1) If there is no augmenting path in Gy, then thereis a
cut (4, B) such that val(f) = cap(4, B)

 Let A be the set of nodes reachable from s in Gf
 Let B be all other nodes
* Key observation: no edges in Gf go from Ato B

original network

* IfeisA — B, then f(e) = c(e)
e IfeisB - A,then f(e) =0

Ask the Audience

e |s this @ maximum flow?

* |s there an integer maximum flow?

* Does every graph with integer capacities have an integer
maximum flow?

Summary

* The Ford-Fulkerson Algorithm solves maximum s-t flow

e Running time O(m : val(f*)) in networks with integer capacities

* Strong MaxFlow-MinCut Duality: max flow = min cut

* The value of the maximum s-t flow equals the capacity of the
minimum s-t cut

* If f*is a maximum s-t flow, then the set of nodes reachable from s
in Gg+ gives a minimum cut

* Given a max-flow, can find a min-cut in time O(n + m)

* Every graph with integer capacities has an integer
maximum flow

* Ford-Fulkerson will return an integer maximum flow

Network Flow

® o0 o w

Key concepts and problem definitions
Augmenting paths and greedy max flow
The Ford-Fulkerson Algorithm
Optimality of Ford-Fulkerson and Duality
Choosing good augmenting paths

Speeding Up Ford-Fulkerson

e Start with f(e) = Oforalledgese € E
* Find an augmenting path P in the residual graph G
* Repeat until you get stuck

>@@

Choosing Good Augmenting Paths

* Last time: arbitrary augmenting paths
* |f Ford-Fulkerson terminates, then we have found a max flow
e Can construct capacities where the algorithm never terminates
e Can require many augmenting paths to terminate

* Today: clever augmenting paths
* Maximum-capacity augmenting path (“fattest path”)
e Shortest augmenting paths (“shortest path”)

Fattest Augmenting Path

* Maximum-capacity augmenting path

e Can find the fattest augmenting path in time O(mlog C) in
several different ways

e Variants of Prim’s or Kruskal’s MST algorithm
e BFS + binary search

Fattest Augmenting Path

Arbitrary Paths

* Assume integer capacities

Value of maxflow: v*

Value of aug path: > 1

Flow remaining in Gg: < v™ — 1

of aug paths: < v"

Maximum-Capacity Path

* Assume integer capacities

Value of maxflow: v*

Value of aug path:

Flow remaining in G¢:

of aug paths:

Fattest Augmenting Path

* f*is a maximum flow with value v* = val(f™)
e P is a fattest augmenting s-t path with capacity B

 Key Claim: B = =
m

Fattest Augmenting Path

* f*is a maximum flow with value v* = val(f™)
e P is a fattest augmenting s-t path with capacity B

 Key Claim: B = L
m

* Proof:

Fattest Augmenting Path

Arbitrary Paths

* Assume integer capacities

Value of maxflow: v*

Value of aug path: > 1

Flow remaining in Gg: < v™ — 1

of aug paths: < v"

Maximum-Capacity Path

* Assume integer capacities

Value of maxflow: v*

Value of aug path:

Flow remaining in G¢:

of aug paths:

Choosing Good Paths

* Last time: arbitrary augmenting paths
* |f Ford-Fulkerson terminates, it has found a maximum flow

* Today: clever augmenting paths
* Maximum-capacity augmenting path (“fattest augmenting path”)
< m augmenting paths (assuming integer capacities)
e 0(m?1In () total running time
e Shortest augmenting paths (“shortest augmenting path”)

Shortest Augmenting Path & Improvements

* Find the augmenting path with the fewest hops
* Can find shortest augmenting path in O(m) time using BFS

* Theorem: for any capacities nm/2 augmentations suffice
e Overall running time 0(m?®n)
* Works for any capacities!

Warning: the proof is challenging, so we will skip it

Better Theorem: Max flow can be solved in O(mn) time
* You can use this fact for all future assignments/exams

Choosing Good Augmenting Paths

* Last time: arbitrary augmenting paths
* |f Ford-Fulkerson terminates, then we have found a max flow
e Can construct capacities where the algorithm never terminates
e Can require many augmenting paths to terminate

* Today: clever augmenting paths
* Maximum-capacity augmenting path (“fattest path”)
e Shortest augmenting paths (“shortest path”)

Fattest Augmenting Path

* Maximum-capacity augmenting path

e Can find the fattest augmenting path in time O(mlogm) in
several different ways

e Use a variant of Dijkstra or combine BFS & BinarySearch

Fattest Augmenting Path

Arbitrary Paths

* Assume integer capacities

Value of maxflow: v*

Value of aug path: > 1

Flow remaining in Gg: < v™ — 1

of aug paths: < v"

Maximum-Capacity Path

* Assume integer capacities

Value of maxflow: v*

Value of aug path:

Flow remaining in G¢:

of aug paths:

Fattest Augmenting Path

* f*is a maximum flow with value v* = val(f™)
e P is a fattest augmenting s-t path with capacity B

 Key Claim: B = =
m

Fattest Augmenting Path

* f*is a maximum flow with value v* = val(f™)
e P is a fattest augmenting s-t path with capacity B

 Key Claim: B = L
m

* Proof:

Fattest Augmenting Path

Arbitrary Paths

* Assume integer capacities

Value of maxflow: v*

Value of aug path: > 1

Flow remaining in Gg: < v™ — 1

of aug paths: < v"

Maximum-Capacity Path

* Assume integer capacities

Value of maxflow: v*

Value of aug path:

Flow remaining in G¢:

of aug paths:

Choosing Good Paths

* Last time: arbitrary augmenting paths
* |f Ford-Fulkerson terminates, it has found a maximum flow

* Today: clever augmenting paths
* Maximum-capacity augmenting path (“fattest augmenting path”)
« < mlInv* augmenting paths (assuming integer capacities)
e O(m?Innlnv*) total running time
* See KT for a faster variant (“fat-enough augmenting path”?)

e Shortest augmenting paths (“shortest augmenting path”)

Shortest Augmenting Path & Improvements

* Find the augmenting path with the fewest hops
* Can find shortest augmenting path in O(m) time using BFS

* Theorem: for any capacities nm/2 augmentations suffice
e Overall running time 0(m?®n)
* Works for any capacities!

Warning: the proof is challenging, so we will skip it

Better Theorem: Max flow can be solved in O(mn) time
* You can use this fact for all future assignments/exams

Applications of Network Flow
a. Reductions between computational problems

Applications of Network Flow

* Algorithms for maximum flow can be used to solve:
* Bipartite Matching
* Image Segmentation
* Disjoint Paths
* Survey Design
* Matrix Rounding
* Auction Design
* Fair Division
Project Selection

Baseball Elimination
Airline Scheduling

Mechanics of Reductions

* Definition: a computational problem is
 a set of valid inputs X and
* aset A(x) of valid outputs foreach x € X

* Example: integer maximum flow

Mechanics of Reductions

* Definition: a reduction is an efficient algorithm
that solves problem B using an algorithm that
solves problem A as a black-box

valid input x
for problem A

solver for A
(black-box)

valid output
u € A(x)

Mechanics of Reductions

* Definition: a reduction is an efficient algorithm
that solves problem B using an algorithm that
solves problem A as a black-box

valid input y __, validinputx
for problem B for problem A

solver for A
(black-box)

valid output - valid output
v € B(y) u € A(x)

Correctness of Reductions

valid input y
for problem B

valid output
v € B(y)

valid input x
for problem A

valid output
u € A(x)

solver for A
(black-box)

Running Time of Reductions

valid input y
for problem B

valid output
v € B(y)

valid input x
for problem A

valid output
u € A(x)

solver for A
(black-box)

Example: Flows and Cuts

valid input y
for problem B

valid output
v € B(y)

valid input x
for problem A

valid output
u € A(x)

solver for A
(black-box)

Example: Sorting and Median

valid input y
for problem B

valid output
v € B(y)

valid input x
for problem A

valid output
u € A(x)

solver for A
(black-box)

Algorithms & Data

Unit 8: Applications of Network Flow
a. Reductions between computational problems
b. Maximum cardinality bipartite matching

Maximum Bipartite Matching

* Input: bipartite graph ¢ = (V,E)withV =LUR
* Output: a matching of maximum size

 Amatching M € E is a set of edges such that every
node v is an endpoint of at most one edge in M

 Size = |M|

Models any problem where one type
of object is assigned to another type:
e doctors to hospitals

* jobs to processors

* advertisements to websites

Mechanics of Reductions

* Theorem: There is an efficient algorithm that solves
maximum bipartite matching (MBM) using an
algorithm that solves integer maximum s-t flow (MF)

valid input y __, validinputx
for problem B for problem A

solver for A
(black-box)

valid output - valid output
v € B(y) u € A(x)

Step 1: Transform the Input

valid input G # valid network
for MBM G' for MF

Step 1: Transform the Input

valid input G » valid network
for MBM G' for MF

Step 2: Receive the Output

valid network

G' for MF
solver
for MF
_ , (black-box)
valid MF f~ for
network G’

Red arrow means f'(e) =1
Black arrow means f'(e) = 0

Step 3: Transform the Output

valid MBM M « valid MF f' for
network G’

for graph G

Reduction Recap

* Step 1: Transform the Input
* Given bipartite graph ¢ = (L,R, E), produce flow
network G' = (V,E,{c(e)}, s, t) by:
e orienting edges e from L to R
e adding a node s with edges from s to every node in L
e adding a node t with edges from every nodeinR to t
e setting all capacitiesto 1

e Step 2: Receive the Output
* Find an integer maximum s-t flow f’in G’
e Step 3: Transform the Output

* Given an integer s-t flow f'(e) let M be the set of edges
e going from L to R that have f'(e) = 1

Correctness

* Need to show:
* (1) This algorithm returns a matching
* (2) This matching is a maximum cardinality matching

Correctness

* This algorithm returns a matching

Correctness

* Claim: G has a matching of cardinality k if and only
if G' has an s-t flow of value k

Correctness

* Claim: G has a matching of cardinality k if and only
if G' has an s-t flow of value k

Running Time

* Need to analyze the time for:
* (1) Producing G’ given G
* (2) Finding a maximum flow in G’
* (3) Producing M given G’

Maximum Bipartite Matching Summary

Solve maximum s-t flow in a graph with n 4+ 2
nodesand m + nedgesand c(e) = lintimeT

!

Solve maximum bipartite matching in a graph with
n nodes and m edgesintimeT + O(m + n)

e Can solve max bipartite matching in time
O (nm) using Ford-Fulkerson

* Improvement for maximum flow gives improvement
for maximum bipartite matching!

Mechanics of Reductions

* Definition: a reduction is an efficient algorithm
that solves problem B using an algorithm that
solves problem A as a black-box

valid input y __, validinputx
for problem B for problem A

solver for A
(black-box)

valid output - valid output
v € B(y) u € A(x)

