
Network Flow

 



Flow Networks
• Directed graph 𝐺 = 𝑉, 𝐸
• Two special nodes: source 𝑠 and sink 𝑡
• Edge capacities 𝑐 𝑒
• Assume strongly connected (for simplicity)
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Flows
• An s-t flow is a function 𝑓 𝑒  such that

• For every 𝑒 ∈ 𝐸, 0 ≤ 𝑓 𝑒 ≤ 𝑐 𝑒                                 (capacity)
• For every 𝑣 ∈ 𝑉 ∖ {𝑠, 𝑡},  σ𝑒 in to 𝑣 𝑓 𝑒 = σ𝑒 out of 𝑣 𝑓 𝑒      (conservation)

• The value of a flow is 𝑣𝑎𝑙 𝑓 =  σ𝑒 out of 𝑠 𝑓 𝑒
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Maximum Flow Problem
• Given G = (V,E,s,t,{c(e)}), find an s-t flow of maximum value

• value(f) = 
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Cuts
• An s-t cut is a partition (𝐴, 𝐵) of 𝑉 with 𝑠 ∈ 𝐴 and 𝑡 ∈ 𝐵

• The capacity of a cut (A,B) is 𝑐𝑎𝑝 𝐴, 𝐵 = σ𝑒 out of 𝐴 𝑐 𝑒
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Minimum Cut problem
• Given G = (V,E,s,t,{c(e)}), find an s-t cut of minimum capacity

• cap({s,3,4,7}, {2,5,6,t}) = 
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Flows & Cuts: Closely Related
• Fact: If 𝑓 is any s-t flow and (𝐴, 𝐵) is any s-t cut, then the 

net flow across (𝐴, 𝐵) is equal to the amount leaving s 
• The net flow across any s-t cut

is the same! ෍
𝑒 out of 𝐴

𝑓 𝑒 − ෍
𝑒 in to 𝐴

𝑓 𝑒 = 𝑣𝑎𝑙(𝑓)
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Cuts & Flows

• Let 𝑓 be any s-t flow and (𝐴, 𝐵) any s-t cut,

𝑣𝑎𝑙 𝑓 ≤ 𝑐𝑎𝑝(𝐴, 𝐵)
pace

valet IIate ate

Ʃ e o

CouthA

Cap A B



True or False?
• The max flow always has an edge e leaving the source s 

such that f(e) = c(e) (is saturated)?

• The max flow always has an edge e such that f(e) = c(e) 
(is saturated)?

False at

True Takeanypathfrom
stat

5 t and increase the flowover

thepath



Network Flow
a. Key concepts and problem definitions
b. Augmenting paths nd greedy max flow



Augmenting Paths
• Given a network 𝐺 =  (𝑉, 𝐸, 𝑠, 𝑡, 𝑐 𝑒 ) and a flow 𝑓, an 

augmenting path 𝑃 is a simple 𝑠 → 𝑡 path such that
𝑓(𝑒) < 𝑐(𝑒) for every edge 𝑒 ∈ 𝑃
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Greedy Max Flow
• Start with 𝑓 𝑒 = 0 for all edges 𝑒 ∈ 𝐸
• Find an augmenting path 𝑃 & increase flow by max amount
• Repeat until you get stuck
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Does Greedy Work?
• Greedy gets stuck before finding a max flow
• How can we get from our solution to the max flow?
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Residual Graphs
• Original edge:  𝑒 = 𝑢, 𝑣 ∈  𝐸.

• Flow 𝑓(𝑒), capacity 𝑐(𝑒)
• Residual capacity: c(e) – f(e)

• Residual edge
• Allows “undoing” flow
• 𝑒 = 𝑢, 𝑣  and 𝑒𝑅 = 𝑣, 𝑢 .
• cap(𝑒𝑅) = f(e)

• Residual graph 𝐺𝑓 = 𝑉, 𝐸𝑓
• Original edges with positive residual capacity & residual edges with 

positive flow
• 𝐸𝑓 = 𝑒 ∶  𝑓 𝑒 <  𝑐 𝑒  ∪ 𝑒𝑅 ∶ 𝑓 𝑒 >  0 .
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Ford-Fulkerson Algorithm
• Start with 𝑓 𝑒 = 0 for all edges 𝑒 ∈ 𝐸
• Find an augmenting path 𝑃 in the residual graph
• Repeat until you get stuck
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Augmenting Paths in Residual Graphs
• Let 𝐺𝑓 be a residual graph
• Let 𝑃 be an augmenting path in the residual graph
• Fact: 𝑓’ =  Augment(𝐺𝑓, 𝑃) is a valid flow

Augment(Gf, P)
    b  the minimum capacity of an edge in P
    for e  P
        if (e is an original edge): 
  f(e)  f(e) + b

else:      
  f(𝑒𝑅)  f( 𝑒𝑅) - b
    return f



Ford-Fulkerson Algorithm

Augment(Gf, P)
    b  the minimum capacity of an edge in P
    for e  P
        if (e is an original edge): f(e)  f(e) + b

else:  f(𝑒𝑅)  f( 𝑒𝑅) - b
    return f

FordFulkerson(G,s,t,{c(e)})
    for e  E: f(e)  0
    Gf is the residual graph
    
    while (there is an s-t path P in Gf)
        f  Augment(Gf,P)

update Gf
    
    return f



Ford-Fulkerson Demo
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What do we want to prove?



Running Time of Ford-Fulkerson
• For integer capacities, ≤ 𝑣𝑎𝑙 𝑓∗  augmentation steps

• Can perform each augmentation step in 𝑂 𝑚  time
• find augmenting path in 𝑂 𝑚
• augment the flow along path in 𝑂 𝑛
• update the residual graph along the path in 𝑂 𝑛

• For integer capacities, FF runs in 𝑂 𝑚 ⋅ 𝑣𝑎𝑙 𝑓∗  time
• 𝑂 𝑚𝑛  time if all capacities are 𝑐𝑒 = 1
• 𝑂 𝑚𝑛𝐶max  time for any integer capacities ≤ 𝐶max
• Problematic when capacities are large—more on this later!



Network Flow
a. Key concepts and problem definitions
b. Augmenting paths and greedy max flow
c. The Ford-Fulkerson Algorithm
d. Optimality of Ford-Fulkerson and Duality



Optimality of Ford-Fulkerson
• Theorem: 𝑓 is a maximum s-t flow if and only if there is no 

augmenting s-t path in 𝐺𝑓

• Strong MaxFlow-MinCut Duality: The value of the max s-t 
flow equals the capacity of the min s-t cut 

• We’ll prove that the following are equivalent for all 𝑓
1. There exists a cut (𝐴, 𝐵) such that 𝑣𝑎𝑙 𝑓 = 𝑐𝑎𝑝(𝐴, 𝐵)
2. Flow 𝑓 is a maximum flow
3. There is no augmenting path in 𝐺𝑓



Optimality of Ford-Fulkerson
• Theorem: the following are equivalent for all 𝑓

1. There exists a cut (𝐴, 𝐵) such that 𝑣𝑎𝑙 𝑓 = 𝑐𝑎𝑝(𝐴, 𝐵)
2. Flow 𝑓 is a maximum flow
3. There is no augmenting path in 𝐺𝑓



Optimality of Ford-Fulkerson
• (3 → 1) If there is no augmenting path in 𝐺𝑓, then there is a 

cut (𝐴, 𝐵) such that 𝑣𝑎𝑙(𝑓) = 𝑐𝑎𝑝(𝐴, 𝐵)
• Let 𝐴 be the set of nodes reachable from 𝑠 in 𝐺𝑓
• Let 𝐵 be all other nodes



Optimality of Ford-Fulkerson
• (3 → 1) If there is no augmenting path in 𝐺𝑓, then there is a 

cut (𝐴, 𝐵) such that 𝑣𝑎𝑙(𝑓) = 𝑐𝑎𝑝(𝐴, 𝐵)
• Let 𝐴 be the set of nodes reachable from 𝑠 in 𝐺𝑓
• Let 𝐵 be all other nodes
• Key observation: no edges in 𝐺𝑓 go from 𝐴 to 𝐵

• If 𝑒 is 𝐴 → 𝐵, then 𝑓 𝑒 = 𝑐 𝑒
• If 𝑒 is 𝐵 → 𝐴, then 𝑓 𝑒 = 0
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Ask the Audience
• Is this a maximum flow?

• Is there an integer maximum flow?
• Does every graph with integer capacities have an integer 

maximum flow?
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Summary
• The Ford-Fulkerson Algorithm solves maximum s-t flow 

• Running time 𝑂 𝑚 ⋅ 𝑣𝑎𝑙 𝑓∗  in networks with integer capacities

• Strong MaxFlow-MinCut Duality: max flow = min cut
• The value of the maximum s-t flow equals the capacity of the 

minimum s-t cut 
• If 𝑓∗ is a maximum s-t flow, then the set of nodes reachable from s 

in 𝐺𝑓∗  gives a minimum cut
• Given a max-flow, can find a min-cut in time 𝑂 𝑛 + 𝑚

• Every graph with integer capacities has an integer 
maximum flow

• Ford-Fulkerson will return an integer maximum flow



Network Flow
a. Key concepts and problem definitions
b. Augmenting paths and greedy max flow
c. The Ford-Fulkerson Algorithm
d. Optimality of Ford-Fulkerson and Duality
e. Choosing good augmenting paths



Speeding Up Ford-Fulkerson
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• Start with 𝑓 𝑒 = 0 for all edges 𝑒 ∈ 𝐸
• Find an augmenting path 𝑃 in the residual graph 𝐺𝑓
• Repeat until you get stuck
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Choosing Good Augmenting Paths

• Last time: arbitrary augmenting paths
• If Ford-Fulkerson terminates, then we have found a max flow
• Can construct capacities where the algorithm never terminates
• Can require many augmenting paths to terminate

• Today: clever augmenting paths
• Maximum-capacity augmenting path (“fattest path”)
• Shortest augmenting paths (“shortest path”)



Fattest Augmenting Path

• Maximum-capacity augmenting path

• Can find the fattest augmenting path in time 𝑂 𝑚 log 𝐶  in 
several different ways

• Variants of Prim’s or Kruskal’s MST algorithm
• BFS + binary search



Arbitrary Paths

• Assume integer capacities

• Value of maxflow: 𝑣∗

• Value of aug path: ≥ 1

• Flow remaining in 𝐺𝑓: ≤ 𝑣∗ − 1

• # of aug paths: ≤ 𝑣∗

Maximum-Capacity Path

• Assume integer capacities

• Value of maxflow: 𝑣∗

• Value of aug path:

• Flow remaining in 𝐺𝑓: 

• # of aug paths:

Fattest Augmenting Path



Fattest Augmenting Path
• 𝑓∗ is a maximum flow with value 𝑣∗ = 𝑣𝑎𝑙 𝑓∗

• 𝑃 is a fattest augmenting s-t path with capacity 𝐵
• Key Claim: 𝐵 ≥ 𝑣∗

𝑚
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Fattest Augmenting Path
• 𝑓∗ is a maximum flow with value 𝑣∗ = 𝑣𝑎𝑙 𝑓∗

• 𝑃 is a fattest augmenting s-t path with capacity 𝐵
• Key Claim: 𝐵 ≥ 𝑣∗

𝑚
• Proof:



Arbitrary Paths

• Assume integer capacities

• Value of maxflow: 𝑣∗

• Value of aug path: ≥ 1

• Flow remaining in 𝐺𝑓: ≤ 𝑣∗ − 1

• # of aug paths: ≤ 𝑣∗

Maximum-Capacity Path

• Assume integer capacities

• Value of maxflow: 𝑣∗

• Value of aug path:

• Flow remaining in 𝐺𝑓: 

• # of aug paths:

Fattest Augmenting Path



Choosing Good Paths
• Last time: arbitrary augmenting paths

• If Ford-Fulkerson terminates, it has found a maximum flow

• Today: clever augmenting paths
• Maximum-capacity augmenting path (“fattest augmenting path”)

• ≤ 𝑚 augmenting paths (assuming integer capacities)
• 𝑂(𝑚2 ln 𝐶) total running time

• Shortest augmenting paths (“shortest augmenting path”)



Shortest Augmenting Path & Improvements

• Find the augmenting path with the fewest hops
• Can find shortest augmenting path in 𝑂(𝑚) time using BFS

• Theorem: for any capacities 𝑛𝑚/2 augmentations suffice
• Overall running time 𝑂 𝑚2𝑛
• Works for any capacities! 

• Warning: the proof is challenging, so we will skip it

• Better Theorem: Max flow can be solved in 𝑂 𝑚𝑛  time
• You can use this fact for all future assignments/exams



Choosing Good Augmenting Paths

• Last time: arbitrary augmenting paths
• If Ford-Fulkerson terminates, then we have found a max flow
• Can construct capacities where the algorithm never terminates
• Can require many augmenting paths to terminate

• Today: clever augmenting paths
• Maximum-capacity augmenting path (“fattest path”)
• Shortest augmenting paths (“shortest path”)



Fattest Augmenting Path

• Maximum-capacity augmenting path

• Can find the fattest augmenting path in time 𝑂 𝑚 log 𝑚  in 
several different ways

• Use a variant of Dijkstra or combine BFS & BinarySearch



Arbitrary Paths

• Assume integer capacities

• Value of maxflow: 𝑣∗

• Value of aug path: ≥ 1

• Flow remaining in 𝐺𝑓: ≤ 𝑣∗ − 1

• # of aug paths: ≤ 𝑣∗

Maximum-Capacity Path

• Assume integer capacities

• Value of maxflow: 𝑣∗

• Value of aug path:

• Flow remaining in 𝐺𝑓: 

• # of aug paths:

Fattest Augmenting Path



Fattest Augmenting Path
• 𝑓∗ is a maximum flow with value 𝑣∗ = 𝑣𝑎𝑙 𝑓∗

• 𝑃 is a fattest augmenting s-t path with capacity 𝐵
• Key Claim: 𝐵 ≥ 𝑣∗

𝑚
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Fattest Augmenting Path
• 𝑓∗ is a maximum flow with value 𝑣∗ = 𝑣𝑎𝑙 𝑓∗

• 𝑃 is a fattest augmenting s-t path with capacity 𝐵
• Key Claim: 𝐵 ≥ 𝑣∗

𝑚
• Proof:



Arbitrary Paths

• Assume integer capacities

• Value of maxflow: 𝑣∗

• Value of aug path: ≥ 1

• Flow remaining in 𝐺𝑓: ≤ 𝑣∗ − 1

• # of aug paths: ≤ 𝑣∗

Maximum-Capacity Path

• Assume integer capacities

• Value of maxflow: 𝑣∗

• Value of aug path:

• Flow remaining in 𝐺𝑓: 

• # of aug paths:

Fattest Augmenting Path



Choosing Good Paths
• Last time: arbitrary augmenting paths

• If Ford-Fulkerson terminates, it has found a maximum flow

• Today: clever augmenting paths
• Maximum-capacity augmenting path (“fattest augmenting path”)

• ≤ 𝑚 ln 𝑣∗ augmenting paths (assuming integer capacities)
• 𝑂(𝑚2 ln 𝑛 ln 𝑣∗) total running time
• See KT for a faster variant (“fat-enough augmenting path”?)

• Shortest augmenting paths (“shortest augmenting path”)



Shortest Augmenting Path & Improvements

• Find the augmenting path with the fewest hops
• Can find shortest augmenting path in 𝑂(𝑚) time using BFS

• Theorem: for any capacities 𝑛𝑚/2 augmentations suffice
• Overall running time 𝑂 𝑚2𝑛
• Works for any capacities! 

• Warning: the proof is challenging, so we will skip it

• Better Theorem: Max flow can be solved in 𝑂 𝑚𝑛  time
• You can use this fact for all future assignments/exams



Applications of Network Flow
a. Reductions between computational problems



Applications of Network Flow
• Algorithms for maximum flow can be used to solve:

• Bipartite Matching
• Image Segmentation
• Disjoint Paths
• Survey Design
• Matrix Rounding
• Auction Design
• Fair Division
• Project Selection
• Baseball Elimination
• Airline Scheduling
• …



Mechanics of Reductions

• Definition: a computational problem is
• a set of valid inputs 𝑿 and
• a set 𝑨(𝒙) of valid outputs for each 𝒙 ∈ 𝑿

• Example: integer maximum flow



Mechanics of Reductions

• Definition: a reduction is an efficient algorithm 
that solves problem B using an algorithm that 
solves problem A as a black-box

solver for A
(black-box)

valid input 𝑥
for problem A

valid output
𝑢 ∈ 𝐴 𝑥



Mechanics of Reductions

• Definition: a reduction is an efficient algorithm 
that solves problem B using an algorithm that 
solves problem A as a black-box

solver for A
(black-box)

valid input 𝑦
for problem B

valid output
𝑣 ∈ 𝐵 𝑦

valid input 𝑥
for problem A

valid output
𝑢 ∈ 𝐴 𝑥



Correctness of Reductions

solver for A
(black-box)

valid input 𝑦
for problem B

valid output
𝑣 ∈ 𝐵 𝑦

valid input 𝑥
for problem A

valid output
𝑢 ∈ 𝐴 𝑥



Running Time of Reductions

solver for A
(black-box)

valid input 𝑦
for problem B

valid output
𝑣 ∈ 𝐵 𝑦

valid input 𝑥
for problem A

valid output
𝑢 ∈ 𝐴 𝑥



Example: Flows and Cuts

solver for A
(black-box)

valid input 𝑦
for problem B

valid output
𝑣 ∈ 𝐵 𝑦

valid input 𝑥
for problem A

valid output
𝑢 ∈ 𝐴 𝑥



Example: Sorting and Median

solver for A
(black-box)

valid input 𝑦
for problem B

valid output
𝑣 ∈ 𝐵 𝑦

valid input 𝑥
for problem A

valid output
𝑢 ∈ 𝐴 𝑥



Algorithms & Data
Unit 8: Applications of Network Flow

a. Reductions between computational problems
b. Maximum cardinality bipartite matching



Maximum Bipartite Matching
• Input: bipartite graph 𝐺 =  (𝑉, 𝐸) with 𝑉 = 𝐿 ∪ 𝑅
• Output: a matching of maximum size

• A matching 𝑀 ⊆ 𝐸 is a set of edges such that every 
node 𝑣 is an endpoint of at most one edge in 𝑀

• Size = 𝑀

Models any problem where one type 
of object is assigned to another type:
• doctors to hospitals
• jobs to processors
• advertisements to websites



Mechanics of Reductions

• Theorem: There is an efficient algorithm that solves 
maximum bipartite matching (MBM) using an 
algorithm that solves integer maximum s-t flow (MF)

solver for A
(black-box)

valid input 𝑦
for problem B

valid output
𝑣 ∈ 𝐵 𝑦

valid input 𝑥
for problem A

valid output
𝑢 ∈ 𝐴 𝑥



Step 1: Transform the Input

valid input 𝐺
for MBM

valid network 
𝐺′ for MF



Step 1: Transform the Input

valid input 𝐺
for MBM

valid network 
𝐺′ for MF



Step 2: Receive the Output

Red arrow means 𝑓′ 𝑒 = 1
Black arrow means 𝑓′(𝑒) = 0

solver
for MF

(black-box)

valid network 
𝐺′ for MF

valid MF 𝑓′ for 
network 𝐺′



Step 3: Transform the Output

valid MBM 𝑀 
for graph 𝐺

valid MF 𝑓′ for 
network 𝐺′



Reduction Recap
• Step 1: Transform the Input

• Given bipartite graph 𝐺 =  (𝐿, 𝑅, 𝐸), produce flow 
network 𝐺’ =  (𝑉, 𝐸, {𝑐(𝑒)}, 𝑠, 𝑡) by:

• orienting edges 𝑒 from 𝐿 to 𝑅
• adding a node 𝑠 with edges from 𝑠 to every node in 𝐿
• adding a node 𝑡 with edges from every node in 𝑅 to 𝑡
• setting all capacities to 1

• Step 2: Receive the Output
• Find an integer maximum 𝑠-𝑡 flow 𝑓’ in  𝐺’

• Step 3: Transform the Output
• Given an integer 𝑠-𝑡 flow 𝑓′ 𝑒  let 𝑀 be the set of edges 

𝑒 going from 𝐿 to 𝑅 that have 𝑓′(𝑒) = 1



Correctness

• Need to show:
• (1) This algorithm returns a matching
• (2) This matching is a maximum cardinality matching



Correctness

• This algorithm returns a matching



Correctness

• Claim: 𝐺 has a matching of cardinality 𝑘 if and only 
if 𝐺’ has an 𝑠-𝑡 flow of value 𝑘



Correctness

• Claim: 𝐺 has a matching of cardinality 𝑘 if and only 
if 𝐺’ has an 𝑠-𝑡 flow of value 𝑘



Running Time

• Need to analyze the time for:
• (1) Producing 𝐺’ given 𝐺
• (2) Finding a maximum flow in 𝐺’
• (3) Producing 𝑀 given 𝐺’



Maximum Bipartite Matching Summary

• Can solve max bipartite matching in time 
𝑂(𝑛𝑚) using Ford-Fulkerson

• Improvement for maximum flow gives improvement 
for maximum bipartite matching!

Solve maximum 𝑠-𝑡 flow in a graph with 𝑛 + 2 
nodes and 𝑚 + 𝑛 edges and 𝑐(𝑒) = 1 in time 𝑇

Solve maximum bipartite matching in a graph with 
𝑛 nodes and 𝑚 edges in time 𝑇 +  𝑂(𝑚 + 𝑛)



Mechanics of Reductions

• Definition: a reduction is an efficient algorithm 
that solves problem B using an algorithm that 
solves problem A as a black-box
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