
Flow Applications

Applications of Network Flow
• Algorithms for maximum flow can be used to solve:

• Bipartite Matching
• Image Segmentation
• Disjoint Paths
• Survey Design
• Matrix Rounding
• Auction Design
• Fair Division
• Project Selection
• Baseball Elimination
• Airline Scheduling
• …

Mechanics of Reductions

• Definition: a computational problem is
• a set of valid inputs 𝑿 and
• a set 𝑨(𝒙) of valid outputs for each 𝒙 ∈ 𝑿

• Example: integer maximum flow

Mechanics of Reductions

• Definition: a reduction is an efficient algorithm
that solves problem B using an algorithm that
solves problem A as a black-box

solver for A
(black-box)

valid input 𝑥
for problem A

valid output
𝑢 ∈ 𝐴 𝑥

Mechanics of Reductions

• Definition: a reduction is an efficient algorithm
that solves problem B using an algorithm that
solves problem A as a black-box

solver for A
(black-box)

valid input 𝑦
for problem B

valid output
𝑣 ∈ 𝐵 𝑦

valid input 𝑥
for problem A

valid output
𝑢 ∈ 𝐴 𝑥

Correctness of Reductions

solver for A
(black-box)

valid input 𝑦
for problem B

valid output
𝑣 ∈ 𝐵 𝑦

valid input 𝑥
for problem A

valid output
𝑢 ∈ 𝐴 𝑥

Running Time of Reductions

solver for A
(black-box)

valid input 𝑦
for problem B

valid output
𝑣 ∈ 𝐵 𝑦

valid input 𝑥
for problem A

valid output
𝑢 ∈ 𝐴 𝑥

Example: Flows and Cuts

solver for A
(black-box)

valid input 𝑦
for problem B

valid output
𝑣 ∈ 𝐵 𝑦

valid input 𝑥
for problem A

valid output
𝑢 ∈ 𝐴 𝑥

Example: Sorting and Median

solver for A
(black-box)

valid input 𝑦
for problem B

valid output
𝑣 ∈ 𝐵 𝑦

valid input 𝑥
for problem A

valid output
𝑢 ∈ 𝐴 𝑥

Maximum Bipartite Matching
• Input: bipartite graph 𝐺 = (𝑉, 𝐸) with 𝑉 = 𝐿 ∪ 𝑅
• Output: a matching of maximum size

• A matching 𝑀 ⊆ 𝐸 is a set of edges such that every
node 𝑣 is an endpoint of at most one edge in 𝑀

• Size = 𝑀

Models any problem where one type
of object is assigned to another type:
• doctors to hospitals
• jobs to processors
• advertisements to websites

Mechanics of Reductions

• Theorem: There is an efficient algorithm that solves
maximum bipartite matching (MBM) using an
algorithm that solves integer maximum s-t flow (MF)

solver for A
(black-box)

valid input 𝑦
for problem B

valid output
𝑣 ∈ 𝐵 𝑦

valid input 𝑥
for problem A

valid output
𝑢 ∈ 𝐴 𝑥

Step 1: Transform the Input

valid input 𝐺
for MBM

valid network
𝐺′ for MF

Step 1: Transform the Input

valid input 𝐺
for MBM

valid network
𝐺′ for MF

Step 2: Receive the Output

Red arrow means 𝑓′ 𝑒 = 1
Black arrow means 𝑓′(𝑒) = 0

solver
for MF

(black-box)

valid network
𝐺′ for MF

valid MF 𝑓′ for
network 𝐺′

Step 3: Transform the Output

valid MBM 𝑀
for graph 𝐺

valid MF 𝑓′ for
network 𝐺′

Reduction Recap
• Step 1: Transform the Input

• Given bipartite graph 𝐺 = (𝐿, 𝑅, 𝐸), produce flow
network 𝐺’ = (𝑉, 𝐸, {𝑐(𝑒)}, 𝑠, 𝑡) by:

• orienting edges 𝑒 from 𝐿 to 𝑅
• adding a node 𝑠 with edges from 𝑠 to every node in 𝐿
• adding a node 𝑡 with edges from every node in 𝑅 to 𝑡
• setting all capacities to 1

• Step 2: Receive the Output
• Find an integer maximum 𝑠-𝑡 flow 𝑓’ in 𝐺’

• Step 3: Transform the Output
• Given an integer 𝑠-𝑡 flow 𝑓′ 𝑒 let 𝑀 be the set of edges

𝑒 going from 𝐿 to 𝑅 that have 𝑓′(𝑒) = 1

Correctness

• Need to show:
• (1) This algorithm returns a matching
• (2) This matching is a maximum cardinality matching

Correctness

• This algorithm returns a matching

Correctness

• Claim: 𝐺 has a matching of cardinality 𝑘 if and only
if 𝐺’ has an 𝑠-𝑡 flow of value 𝑘

Correctness

• Claim: 𝐺 has a matching of cardinality 𝑘 if and only
if 𝐺’ has an 𝑠-𝑡 flow of value 𝑘

Edge-Disjoint Paths
• Input: directed graph 𝐺 = (𝑉, 𝐸) and vertices 𝑠, 𝑡.
• Output: maximum number of edge disjoint paths

between 𝑠 and 𝑡.
• Each edge must appear in at most one path.
• A vertex may belong to multiple paths.

Set all capacities to hat Sakemattion return s t
the answer as theans to EDPproblem

Thmwiththisreductionthesatto EDP is k iffthesol totheflow instone
is k

Proof If EDPis k pass aflowofonethougheachpath so flowsat K

fortheotherdirection we applythe fromdecompositionthin theintegralver
Thisgives is flowpaths with integerflows whichmusthaveflowexactly

g go by
me Additively thesepathsmustbe edgedisjointbecause eacheyehas
capacity 1

Vertex-Disjoint Paths
• Input: directed graph 𝐺 = (𝑉, 𝐸) and vertices 𝑠, 𝑡.
• Output: maximum number of vertex disjoint paths

between 𝑠 and 𝑡.
• Each edge must appear in at most one path.
• A vertex may belong to multiple paths.SITE

atmost onepath
otherthansit

vertexcapacitatedflows In addition to edgecapacities supposewe are also

given or capacityCreforeveryvertex re restrictingtheamountof flow
into U

Lemma The ventercap l im can besend in O m T time
where T is thetimeneedto solvemaxflam onagughwith an

vertices and mint edges
at

Itat s.EE t

a y

Freveyedge curel addedge Yont Vint

It canbeshownthattheresultinggraphhasmaxflowk iff
the max vertex capflow in G has val K

We use the same reduction as before exceptweput a capacityofone
onanyvertex

Baseball Elimination
• Every year millions of American baseball fans eagerly watch their

favorite team, hoping they will win a spot in the playoffs, and ultimately
World Series.

• Sadly, many teams are “mathematically eliminated” days or weeks
before the regular season ends. E.g. if a team cannot win enough games
to catch up to the current leader, they are eliminated.

• But the situation is not always this easy. Consider the following standing
from American League East on Aug 30, 1996.

• While Detroit is clearly behind, if they win all their 27 remaining games
they will end up with 76 wins, more than any team has now.

• But does this mean Detroit can end up being the leader?

76 117
76 30 20
76 171
771

76

76

Baseball Elimination
• The baseball elimination problem can be abstracted as follows.
• Input:

• 𝑊 1. . 𝑛 : Number of current wins by team 𝑖
• 𝐺 1. . 𝑛, 1. . 𝑛 : Number of game left between teams 𝑖 and 𝑗.

• Goal: Can team 𝑛 end up with maximum number of wins possibly
tied with other teams?

Baseball Elimination
• Let 𝑅 𝑖 = σ𝑗 𝐺[𝑖, 𝑗] be the remaining games for team 𝑖.
• Let’s assume team 𝑛 wins all of its 𝑅[𝑛] remaining games.
• Observation: Team 𝑛 ends up in first place iff every team 𝑖 wins at

most 𝑊 𝑛 + 𝑅 𝑛 − 𝑊[𝑖] of its remaining games.

D Ff sakesin

m at On

Project Selection
• A set of 𝑛 projects. Some projects cannot be started until certain

other projects are completed. The projects and their
dependencies are described by a directed acyclic graph (DAG).

• Each project 𝑣 has a profit $ 𝑣 which can be positive or negative
(in that case doing the project has a cost).

• Goal: Finish a subset of valid projects to maximize profit.

• Key Claim: Take any S-T cut of finite weight W. Then selecting the
jobs in S guarantees a profit of P-W where P is total profit of all
profitable jobs.

Profitable jobs

Costly jobs

D 15
W 13

It therefore suffices tominimizew to maximizeprofit

