
CS 7880: Algorithms for Big Data (Fall’22) Northeastern University

Lecture 10 & 11
October 18, 2022

Instructor: Soheil Behnezhad Scribe: Haoyu He

Disclaimer: These notes have not been edited by the instructor.

1 Introduction to Streaming Algorithms

In this lecture, we first exposed to streaming algorithms which is used to process data streams where input
data is coming one by one. Primarily, we focus on space complexity [1] rather than time complexity which
we talked a lot in previous lessons. We can take an example of this.

Problem 1. There are n elements from a universe [m] = {1, 2, 3, ...,m} arriving one by one. Our goal is to
return one element uniformly at random. How much space do we need?

We have two easy and straightforward solutions to this. The first one is to create a list of n, store the n
elements and then pick one from it uniformly. Space we need for this solution is O(nlgm) since we have n
entries and each we need O(lgm) space

The second solution is to keep an array of length m, for each i ∈ [m] count the number of time we see i
and store it to the corresponding position. We then pick one from the array with probability respect to the
number of times we see it and return it in m. Space we need for this solution is O(mlgn) since we have m
entries and each we need O(lgn) space

The above two solutions require a lot of space and can we do better? Of course! Pick i ∈ [n] uniformly at
random. When we see the i-th element we return it. The space we need is O(lgn + lgm) since we need to
store i and the element we return.

Consider the same problem but suppose n is not known, can we still achieve with same space complexity?

Algorithm 1:
set s as an empty set
when the i-th element arrives, it has a probability of 1

i to replace the item in s
After all the elements arrived, return s

Claim 1. Suppose ei ̸= ej for any i ̸= j. For any i, probability of returning ei is
1
n .

Proof.

Pr[returning ei] =
1

q
×Πn

j=i+1(1−
1

j
)

=
1

i
× i

i+ 1
× i+ 1

i+ 2
× ...× n− 1

n

=
1

n

Thus the space we need is O(lgn+ lgm) (one for counter and one for stored number) even if we don’t know
n beforehand.

1

2 Streaming Algorithms for Distinct Elements Counting

One interesting application of streaming algorithms is to count distinct elements arriving one after another
and there has some reliable solutions to it[2]. Let’s start with a simple example.

Problem 2. There are n elements from universe [m] = {1, 2, 3, ...,m} arriving one by one. The goal is to
return the number of distinct elements, DE, we have seen.

For example, let m = 5, n = 7 and the sequence we seen is 1, 2, 5, 4, 2, 1, 4. The answer to this one should be
four since we saw four distinct elements 1, 2, 4, 5. There are also two trivial solutions, O(m) and O(nlgm).
The first one is we create a boolean array of size m and set each entry as false. For each element we see, go
to the corresponding entry and change it to true. Finally we count the number of entries being true. The
space we need is this array which is O(m). The second one is we create an empty array and for each element
we see we append it to this array. After this, we count the number of distinct element in this array. Since
the size of each entry is O(lgm) and we have n of these, the space we need is O(nlgm)

Claim 2. There are two known lowerbounds regarding deterministic and randomized algorithms. The first
one is every deterministic algorithm requires Ω(m) bits, even if it returns a 1.1-approximation. The second
one is every randomized algorithm returning an exact solution requires Ω(n) bits of space.

Theorem 3. For any ϵ > 0, δ > 0, there is a randomized algorithm return (1 + ϵ)-approximation solution
to distinct elements using the polynomial of lgn, lgm 1

ϵ , lg(
1
δ) space and succeed up to 1− δ.

Pr[D̃E < (1− ϵ)DE] ≥ 1− δ

2.1 Threshold testing approach to find DE

We propose a new algorithm to find DE. Given a threshold 0 ≤ T < n, the goal is to return L if this distinct
element DE ≤ T and H if DE > 2T

TT
2

T
4

2T 4TDE

Either way L LHH

We can see from the above figure that to the left of T
2 the algorithm will return H and to the right of the

2T will return L and can return anything on T

Algorithm A :
For any i = 0, 1, ..., lgn
let Ti = 2i, A be threshold tester.
For any Ti, run A with parameter δ′ = δ

2lgn
let i be the smallest index such that A returns L for Ti

Claim 4. let DE ∈ [Ti, Ti+1] then with probability greater or equal to 1− δ, algorithm A returns Ti or Ti+1

Proof. let ϵ1 be the event that algorithm A return T ∈ {T0, ..., Ti−1} and ϵ2 be the event that algorithm A

2

return T ∈ {Ti+2, ...}. Thus we have

Pr[ϵ1] ≤ Pr[∃j < i s.t. α returns L for Tj]

≤ Σi−1
j=0Pr[α returns L for Tj]

≤ lgn× δ′

= lgn× δ

2lgn

=
δ

2

Pr[ϵ2] ≤ Pr[α returns H for all Tj , j ≤ i+ 1]

≤ Pr[α returns H for Ti+1]

≤ δ′

=
δ

2lgn

Thus

Pr[correct output] = 1− Pr[ϵ1 ∨ ϵ2]

= 1− Pr[ϵ1]− Pr[ϵ2]

≤ 1− δ

2
− δ

2lgn

≤ 1− δ

The space complexity of this algorithm is O(lgm) times the space complexity of A for each run.

Algorithm: a prelinminary version of algorithm A
Pick a hash function: h : [m] −→ [n]
For any i ∈ [m], h(i) is uniformly distributed on [T] noted that the space complexity for this is Ω(mlgT).
For each element ei arrives, check if ei is 1
if so return H
otherwise return L

This is an visualization of this algorithm. In the figure above, each element in [m] maps to the first element
or any element in T is 1

T

Lemma 5. The followings are true for the algorithm α.
If DE ≤ T , then α returns L with a probability higher than or equal to 1

e1.01 ≈ 0.36
If DE ≥ 2T , then α returns L with a probability less than or equal to 1

e2 ≈ 0.13

Proof. Let i1, ..., iDE be distinct elements. Thus

Pr[return = Pr[hij ̸= 1 for all j ∈ [DE]]

So if DE ≥ 2T , then Pr[return L] = (1 − 1
T)

DE ≤ (1 − 1
T)

2DE ≤ 1
e2 . if DE ≤ T , then Pr[return L] =

(1− 1
T)

DE ≥ (1− 1
T)

T = 1
e1.01

3

Exercise. Proof that (1− 1
T)

T is increasing for T ≥ 2.

If the above one is correct,

Pr[return L] = (1− 1

T
)DE ≥ (1− 1

T
)T ≥ (1− 1

100
)100 = 0.366

Lemma 6. There is an algorithm that give T ≥ 100

• If DE ≤ T , then the algorithm returns L with probability greater than 1
e1.01 ≈ 0.36

• If DE ≥ 2T , then the algorithm returns L with probability greater than 1
e2 ≈ 0.13

The gap between 0.13 and 0.36 with be equally divided and assign correspond probability to closer label to
ensure we get some reasonable results on this.

Algorithm A (refined version based on previous one)
Let λ := 1

2 (
1
ϵ2 + 1

ϵ1.01)

Run the algorithm of lemma 6 for k × lg(2
δ)

3

(0.36−δ)2 = O(lg 1
δ) times all in parallel

Let Ni := 1 if and only if the i-th run returns L
Let N := Σk

i=1Ni

If N ≥ k return L otherwise return H

Lemma 7. Algorithm A returns the right answer with probability at least 1− δ.

Proof. Suppose that DE ≤ T . In this case we are supposed to return L.

E[N1] ≥ 0.36 ⇒ E[N] = k × E[N1] ≥ 0.36k

Pr[returning L] = Pr[N > k]

= 1− Pr[N ≤ λk]

= 1− Pr[|N − E[N]| ≥ (0.36− k)]

≥ 1− 2e−
(0.36−λ)2k2

3E[N]

≥ 1− 2e−
(0.36−λ)2k2

3k

= 1− 2e−
(0.36−λ)2k

3

= 1− 2e−lg 2
δ

≥ 1− δ

The other case where DE ≥ 2T can be proved symmetrically.

Definition 8. A family H = {h : [a] −→ [b]} is called a k-wise independent family of hash functions if for
all distinct x1, x2, ..., xk ∈ [a] and any not necessary distinct y1, y2, ..., yk ∈ [b],

Prh∼H [h(x1) = y1, h(x2) = y2, ..., h(xk) = yk] =
1

bk

Lemma 9. let H = {h : [a] −→ [b]} be a family of k-wise independent hash function. Let x1, x2, ..., xk be
distinct elements in [a]. Then

• for every i ∈ [k], h(Hi) is uniform over [b]

4

• h(x1), h(x2), ..., h(xk) are mutally independent

Proof. Take some arbitrary y1 ∈ [b].

Pr[h(x1) = y1] = Σy1,y2,...,yk∈[b]Pr[h(x1) = y1, h(x2) = y2, ..., h(xk) = yk]

= Σy2,y3,...,yk∈[b]
1

bk

=
bk−1

bk

=
1

b

Pr[h(x1) = y1, h(x2) = y2, ..., h(xk) = yk] =
1

bk
= Πk

i=1Pr[h(xi) = yi]

Let k ≥ 2 and let p > k be a prime number. Let H be the set of degree k− 1 polynomials over Fp (integers
mod p).

H = {h : [p] −→ [p], h(x) = ck−1x
k−1 + ck−2x

k−2 + ..+ c0 mod p}
where ci ∈ {0, 1, ..., p− 1}

To sample h from H uniformly, it suffices to sample k independent coefficients c0, c1, ..., ck−1 from {0, 1, ..., p−
1} uniformly.

Proposition 10. For any a, b, there exists a k-wise independent family if hash functions mapping [a] −→ [b],
that requires O(k × lg(a+ b)) bits of space to store.

The threshold tester we discussed also works with 2-wise independence, so it only requires O(lgm × lg 1
δ)

space for each threshold tester. Thus the overall space is O(lgm× lgm× lg lgm
δ) = O(lg2m(lglgm+ lg 1

δ))

Take a 2-wise independent hash function h : [m] −→ [m] where m takes O(lgm) bits. Let t = 100
ϵ2 , X be the

t-th smallest y ∈ [m] such that h(x) = y for some x in the input. Finally, return DE = mt
X

Lemma 11. Pr[|DE − D̃E| ≥ ϵDE] ≤ 1
50

Proof. The proof can be divided into two parts and we focus on the lower tail first.

Pr[D̃E < (1− ϵ)DE] = Pr[
mt

x
< (1− ϵ)DE]

= Pr[X >
mt

(1− ϵ)DE
]

= Pr[less than t distinct element needed to a value ≤ mt

(1− ϵ)DE
(We refer this to τ)]

For each i ∈ [DE] define Yi be the indicator of the event that the i-th distinct element is mapped to a value
less than τ

Definition 12. Y = ΣDE
i=1Yi

E[Yi] = E[Y1] = Pr[h(x1) < τ] =
τ

m
=

t

(1− ϵ)DE

By theorem of expectation of linearity, we have

E[Y] = DE × E[Y1] =
t

1− ϵ

Pr[x >
mt

1− ϵ
DE] = Pr[Y < t]

So it suffices to prove Y is not going to be made smaller than its expected value

5

References

[1] Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating the frequency
moments. In Proceedings of the twenty-eighth annual ACM symposium on Theory of computing, pages
20–29, 1996. 1

[2] Ziv Bar-Yossef, TS Jayram, Ravi Kumar, D Sivakumar, and Luca Trevisan. Counting distinct elements in
a data stream. In International Workshop on Randomization and Approximation Techniques in Computer
Science, pages 1–10. Springer, 2002. 2

6

	1 Introduction to Streaming Algorithms
	2 Streaming Algorithms for Distinct Elements Counting
	2.1 Threshold testing approach to find DE

