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1 MPC Algorithms with Strongly Sublinear Space

Given a graph G, we focus on algorithms in the MPC model using O(nϵ) space per machine for 0 < ϵ < 1.
We refer to this as the strongly sublinear regime.

Theorem 1 ([GU19]). For any 0 < δ < 1 there is an O(
√
log n · log log n) algorithm for finding a (1 + ϵ)

approximate (weighted) matching or maximal independent set and a 2-approximate minimum vertex cover
or maximal matching, using O(nδ) space.

Remark. It is open whether the O(
√
log n · log log n) bound can be improved on. There are reasons,

however, to believe that the correct round complexity is O(log log n).

1 vs. 2 cycle problem: Suppose that a given graph input is either 1 cycle on n nodes or 2 cycles on n/2
nodes each. How many rounds do we need to distinguish the two possible inputs with strongly sublinear
space per machine?

Claim 2 (1 vs. 2 cycle conjecture). Solving the 1 vs 2 cycle problem requires Ω(log n) rounds. (Open)

Theorem 3. For any fixed 0 < δ < 1, there is an O(log n) round MPC algorithm that returns the number
of connected components in a given graph, using O(nδ) space per machine.

Remark. Note that the best known lower bound for solving the 1 vs. 2 cycle problem with O(nδ) space
is Ω(1/δ). Furthermore, proving a better than Ω( 1δ ) lower bound for any problem in P would imply
NC1 ⊊ P (i.e. that there exist problems in P not in NC1a) The problem of whether NC1 ⊊ P has
been open for several decades, so seems an indication of the difficulty of proving these kinds of lower
bounds [BIS90].

aRecall that NC1 is the class of problems that can be solved with poly-size circuits of logarithmic depth.

We now consider a sketch of an algorithm for solving the 1 vs. 2 cycle problem in the strongly sublinear
regime.
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1 vs. 2 cycle Algorithm (1v2ALG)

• For some O(log n) steps

1. Mark every vertex with prob. 1
2 independently.

2. Every unmarked vertex v that has at least one marked neighbor u is contracted to u, breaking
ties arbitrarily.

• Return the number of remaining vertices

For example, consider executing this algorithm on the graph below, where vertices {1, 2, 6} are marked
initially, and the neighbors of these marked nodes are then contracted:
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resulting in the following graph (post contraction):
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Claim 4. Take any vertex v not in a singleton component. Then v is removed in the next iteration of
1v2ALG with probability at least 1/4.

Proof. Take any neighbor u of v. If v is not marked and u is marked, then v is removed. This will occur
with probability 1/4, since each vertex is marked with prob. 1/2.

Consider a component Ci in iteration i where |Ci| > 1. Let Ci+1 be the same component after round i+ 1
completes. From the above we get that

E [|Ci+1|] ≤
3

4
|Ci|

Now, take a component C0 in the original graph. We have that

E [|Ci|] ≤
3

4
E [|Ci−1|] ≤

(
3

4

)2

E [|Ci−2|] ≤ . . .

so if we do this for r = 10 log n rounds, we have

E [|Cr|] ≤
3

4

10 logn

|C0| ≤
1

n3
· n =

1

n2

So Pr[Cr > 1] ≤ 1
n2 i.e., a connected component has size larger than 1 after r rounds with low probability.

Taking a union bound over at most n components implies that with prob. 1 − 1
n all components become

singleton after O(log n) rounds.
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1.1 Diameter Parameterization

The diameter D of a graph G is the “longest shortest path” in G. We can parameterize the complexity
based on graph diameter.

Remark. It is open whether there is an O(logD) round algorithm for graph connectivity using O(nϵ)
space.

Theorem 5 ([ASS+18]). Graph connectivity can be solved in O(logD · log log n) rounds with O(m) total
space and O(nϵ) space per machine.

Theorem 6 ([BDE+19]). Graph connectivity can be solved in O(logD) rounds with O(m) total space and
O(nϵ) space per machine.

Note that both of the algorithms from the above results use randomization.

Theorem 7 ([CC22]). Graph connectivity can be solved in O(logD+log log n) rounds with O(m) total space
and O(nϵ) local space deterministically.

The following key ideas are used in the results of Theorem 5.

• Idea 1 (Random contraction): If every vertex has degree ≥ b, then we can mark every vertex with
probability 1

b as opposed to marking with prob. 1
2 .

• Idea 2 (Graph exponentiation): Within O(logD) rounds we can increase the degree of every vertex
to

√
b using O(b) space per machine.
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