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1 Edge-Degree Constrained Subgraphs

Graph sparsification is a common tool for dealing with big graphs. The idea is to come up with a sparse
graph/subgraph that preserves certain properties of the original graph that we care about. The edge-
degree constrained subgraph (EDCS), introduced first by Bernstein and Stein [BS15], is such a sparsifier that
robustly, in many senses, preserves the maximum matching of the graph approximately. In this lecture, we
will cover its definition and some of its properties. The proofs we follow are due to a paper of Assadi and
Bernstein [AB19].

1.1 Preliminaries

Theorem 1 (Extended Hall’s Theorem). Let G(L,R) be a bipartite graph. It holds that

µ(G) = min
A⊆L

|L \A|+ |N(A)|

Lemma 2 (Lovasz Local Lemma). Suppose E1, . . . , Et are t events such that Pr (Ei) ≤ p for all i, and Ei is
mutually independent from all but k of the other events. If p(k + 1) < 1

e , then Pr
(
∩
i
Ei
)
> 0.

Definition 3. Given a graph G, a subgraph H ⊆ G is an EDCS(G, β, β−), where β ≥ β− ≥ 0, if it has the
following two properties:

(P1) ∀(u, v) ∈ EH , we have dH(u) + dH(v) ≤ β,

(P2) and ∀(u, v) ∈ EG \ EH , we have dH(u) + dH(v) ≥ (1− λ)β.

Remark. A maximal matching is an EDCS with β = 2 and β− = 1, which approximates maximum
matching by a factor of 1

2 . As we will show, by letting β be a large enough constant and letting β− be
close enough to β, one can achieve a factor of 2

3 .

Lemma 4. For any graph G and integers β and β− such that β− ≤ β − 1, there exists a subgraph H ⊆ G
that is an EDCS(G, β, β−).

Proof. Consider the following process: Start with the subgraph H being empty. While H is not an
EDCS(G, β, β−), find an edge e ∈ EH that doesn’t satisfy (P1) and remove it from H, or find an edge
e ∈ EG \ EH that doesn’t satisfy (P2) and add it to H. We will show that this process will stop after at
most O(nβ2) steps, meaning it would produce an EDCS.

To do so, we introduce a potential function:

Φ(H) = Φ1(H)− Φ2(H),

where

Φ1(H) =

(
β − 1

2

)∑
u

dH(u),
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and
Φ2(H) =

∑
(u,v)∈EH

dH(u) + dH(v).

When H = ∅, the potential function is zero. At any point it holds that

Φ(H) ≤ Φ1(H) ≤ nβ

(
β − 1

2

)
To see this, note that in the beginning all vertices have degree zero in H. And when an edge is being added,
both it endpoints must have degree smaller than β− ≤ β − 1. So the maximum degree is always bounded
by β.

Now we will show that whenever we add or remove an edge, Φ increases by at least 1, hence the process will
stop after at most nβ

(
β − 1

2

)
= O(nβ2) steps. First, let’s say we are removing an edge (u, v), that violates

(P1), from H. The sum of degrees will decrease by 2 and Φ1 will decrease by 2β− 1. Also, (u, v) is removed
from the sum in Φ2, and for every edge adjacent to (u, v), the edge degree will decrease by 1. So Φ2 is
decreased by (dH(u) + dH(v)) + (dH(u)− 1) + (dH(v)− 1) ≥ 2β, and Φ will overall increase by at least 1.

Finally, consider adding an edge (u, v), that violates (P2), to H. The sum of degrees will increase by 2 and
Φ1 will increase by 2β − 1. Similar to the previous case, (u, v) is added to the sum in Φ2, and for every
adjacent edge, the edge degree will increase by 1. So Φ2 is increased by (dH(u)+dH(v)+2)+dH(u)+dH(v) ≤
2β− ≤ 2β − 2, and Φ will overall increase by at least 1.

Lemma 5. Let H(L,R) be a bipartite graph such that for every edge (u, v) ∈ EH it holds that

dH(u) + dH(v) ≤ β.

Let A ⊆ L be a vertex set of average degree d̄, and let E be the set of outgoing edges of A. Then the average
degree of N(A) from the edges in E is at most β − d̄.

Proof. Because of the upperbound on the edge degrees in H, we have:∑
(u,v)∈EH

dH(u) + dH(v) ≤ β · |E|

On the other hand we have (dE(u) denotes degree of u from the edges in E):∑
(u,v)∈EH

dH(u) + dH(v) =
∑
u∈A

(dH(u))2 +
∑

v∈N(A)

dH(v) · dE(v)

≥
∑
u∈A

(dH(u))2 +
∑

v∈N(A)

(dE(v))
2

≥ |A|
(∑

u∈A dH(u)

|A|

)2

+ |N(A)|

(∑
v∈N(A) dE(v)

|N(A)|

)2

(∗)

= |A|
(
|E|
|A|

)2

+ |N(A)|
(

|E|
|N(A)|

)2

= |E|
(
|E|
|A|

+
|E|

|N(A)|

)
= |E|

(
d̄+

|E|
|N(A)|

)
Where (∗) follows from the fact that for variables with a fixed sum, the sum of squares is minimized when all
the variables are equal. Putting this together with the inequality in the beginning, we conclude the proof:

d̄+
|E|

|N(A)|
≤ β
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1.2 Main Results

In the remaining section we will prove one of the most important properties of EDCS, that EDCS approxi-
mates maximum matching for both bipartite and non-bipartite graphs.

Theorem 6. Let G(L,R) be bipartite graph and ε < 1
2 . Let λ ≤ ε

4 , β > 2λ−1, and β− ≥ (1 − λ)β. Then
for any H ⊆ G that is an EDCS(G, β, β−), it holds that

µ(G) ≤
(
3

2
+ ε

)
µ(H).

Proof. Let A be a Hall’s witness for H, i.e. such that |L \ A| + |N(A)| = µ(H). We define Ā = L \ A,
B = N(A), and B̄ = R \B. Note that by definition there are no edges between A and B̄. Take a maximum
matching M between A and B̄ in G, and let S be the vertex set of M . We will state a few facts and then
put them together to complete the proof. For now, take the following claim to be true:

Claim 7. M ≥ µ(G)− µ(H).

The vertices in S are perfectly matched with edges in EG \EH . Hence, by (P2), S has average degree larger
than β−/2 = 1−λ

2 β in H. More formally:∑
u∈S

dH(u) =
∑

u∈S∩L

dH(u) +
∑

v∈S∩R

dH(v)

=
∑

(u,v)∈M

dH(u) + dH(v)

≥ |M | · β−

= |S| · β
−

2

Let E be the outgoing edges of S in H. By applying Lemma 5 to S in H, it follows that the average degree of

NH(S) from the edges in E, is at most β− β−

2 = 1+λ
2 β. Also, NH(S) ⊆ Ā∪B, so |NH(S)| ≤ |Ā|+|B| = µ(H).

We are now ready to prove the theorem. Before giving a concise proof, consider the following argument. We
have proven that the average degree of NH(S) from the edges in E is not much larger than that of S, so
|NH(S)| must be almost as large as |S|. Hence:

2(µ(G)− µ(H)) ≤ |S| ≲ |NH(S)| ≤ |Ā|+ |B| = µ(H)

Which gives:

µ(G) ≲
3

2
µ(H)

More formally:

2(µ(G)− µ(H)) · 1− λ

2
β ≤ |S| · 1− λ

2
β

≤ |E|

≤ |NH(S)| · 1 + λ

2
β

≤ µ(H) · 1 + λ

2
β

Moving the terms around we have:

2µ(G) ≤
(
2 +

1 + λ

1− λ

)
µ(H) ≤ (3 + 2ε)µ(H),

and the theorem follows.

3



Proof of Claim 7. Notice that any maximummatching ofH, covers all of Ā, and |NH(A)|many of the vertices
in A. So, any maximum matching of G, even if it covers all of Ā, has to still cover |NH(A)|+(µ(G)−µ(H))
vertices from A. And at least µ(G) − µ(H) of them must be matched to outside of NH(A), which gives
|M | ≥ µ(G)− µ(H).

More formally, let M∗ be a maximum matching in G, and let G∗ = H ∪M∗. By the choice of A, when have

µ(H) = |L \A|+ |NH(A)|,

and by the Extended Hall’s Theorem, we have

µ(G∗) ≤ |L \A|+ |NG∗(A)|.

Therefore,
µ(G)− µ(H) = µ(G∗)− µ(H) ≤ |NG∗(A)| − |NH(A)| ≤ |NG∗\H(A)|.

Notice that G∗ \H is exactly the edges of M∗ that are missing from H, Hence every vertex in NG∗\H(A) is
matched by an edge of M∗ to A, which concludes the proof.

Now we move on to the non-bipartite case.

Theorem 8. Let G be a (possibly non-bipartite) graph, and let ε < 1
2 . Let λ ≤ ε

32 , β ≥ 100λ−2 log(1/λ),
and β− ≥ (1− λ)β. Then for any H ⊆ G that is an EDCS(G, β, β−), it holds that

µ(G) ≤
(
3

2
+ ε

)
µ(H).

Proof. To prove the theorem, we will introduce a bipartization G̃ = G[L,R] of G, where L and R are a
partition of the vertices and G[L,R] denotes the subgraph of G that includes the edges between L and R.
This bipartization will have two properties:

1. µ(G̃) = µ(G),

2. and H̃ = H ∩ G̃ is an EDCS(G̃, β̃, β̃−), where β̃ = 1+4λ
2 β and β̃− = 1−5λ

2 β.

If such a bipartization exists, the theorem can be proven as follows:

µ(H) ≥ µ(H̃) ≥
(
3

2
+ ε

)
µ(G̃) ≥

(
3

2
+ ε

)
µ(G)

Where the second inequality follows from Theorem 6 (the bipartite case).

To prove the existence, we use a probabilistic method. Fix a maximum matching M , and build L and R as
follows:

1. For any edge (u, v), put u in either L or R with probability 1
2 , and put v on the other side.

2. For any unmatched vertex u, put it in L or R with probability 1
2 .

Notice that in this manner, G̃ = G[L,R] always includes M . So the first property holds, i.e. µ(G̃) = µ(G).
All it remains to show is that H̃ is an EDCS of G̃ with non-zero probability. Intuitively, the degrees of the
vertices in H̃ are about half of what they were in H. So the inequalities (P1) and (P2) would hold for about
half the value of β and β−, which we have called β̃ and β̃−.

To prove H̃ is an EDCS(G̃, β̃, β̃−) with non-zero probability, consider any vertex u that is unmatched in M
(the matched case is similar). Assume, by symmetry, that u is in L. If any neighbours of u are matched

4



together, exactly one of them will appear in R. Otherwise, they would appear in R independently with
probability 1

2 . So we have:

E [dH̃(u)] =
1

2
dH(u)

Now by the Chernoff bound (using β as an upperbound for the number of neighbours that are not matched
together) we have:

Pr (|dH̃(u)− E [dH̃(u)] | > λβ) ≤ exp

(
−λ2β2

3β

)
(∗)
≤ exp(−4 log β) ≤ β−4

Where (∗) holds because β ≥ 12λ−2 log β. To see this note that the inequality holds for β = 100λ−2 log(1/λ)
and β

log β is an increasing function.

Let Eu be the event that |dH̃(u)− E [dH̃(u)] | > λβ. Notice that Eu, only depends on the place of only some
of the vertices, i.e. {u} ∪NH(u) and vertices matched to {u} ∪NH(u). Hence Eu would be independent of
Ev if their distance is larger than 3, so Eu is independent of all but at most β3 other events. And it holds
that β3 · β−4 = β−1 < 1

e . Applying the Lovasz Local Lemma, we get:

Pr

(⋂
u

Eu

)
> 0,

That is there exists a bipartization G̃ = G[L,R] such that none of the Eu’s occur. It is only left to show that
H̃ = H ∩ G̃ is an EDCS(G̃, β̃, β̃−). Take any (u, v) ∈ EH̃ , we have:

dH̃(u) + dH̃(v) ≤ 1

2
(dH(u) + dH(v)) + λβ ≤ 1 + 4λ

β
,

and for any (u, v) ∈ EG̃ \ EH̃ we have:

dH̃(u) + dH̃(v) ≥ 1

2
(dH(u) + dH(v))− λβ ≥ 1

2
β− − λβ ≥ 1− 5λ

2
β
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