
CS 7880: Algorithms for Big Data (Fall’22) Northeastern University

Lecture 21
November 29, 2022

Instructor: Soheil Behnezhad Scribe: Amir Azarmehr

Disclaimer: These notes have not been edited by the instructor.

1 A Random-Order Streaming Algorithm for Maximum Matching

In this lecture we will cover an algorithm that almost- 23 -approximates the maximum matching in the random-
order semistreaming model. This means that the edges of the graph appear in a random order, as opposed to
an adversarial order, and the algorithm will use O(npolylog n) space to approximate the maximum matching.
The algorithm we will discuss is deterministic and uses O

(
n log npoly 1

ε

)
space, to

(
2
3 − ε

)
-approximate the

maximum matching with high probability. More formally, we will prove the following:

Theorem 1. When the edges of a graph G arrive in a random-order stream, there is an algorithm that uses
O(n log npoly 1

ε) space with high probability, and returns a matching of size at least
(
2
3 − 3ε

)
µ(G).

First, we will reiterate the definition of edge-degree constrained subgraph (EDCS) and a related theorem
from the last lecture. Then we will prove a key lemma about edge-degree bounded subgraphs and underfull
edges, and move on to describing the algorithm. The results in this lecture are due to Bernstein [Ber20].

Remark. At the time that Theorem 1 was proved by Bernstein [Ber20], 2/3-approximation was con-
sidered a barrier for this problem. This barrier was (only slightly) broken in a subsequent paper of
Assadi and Behnezhad [AB21] which obtains a (2/3 + ε0)-approximation for a small absolute constant

ε0 > 0 using Õ(n) space and a single pass (also under random-arrival of edges).

1.1 Preliminaries

Definition 2. Given a graph G, a subgraph H ⊆ G is an EDCS(G, β, λ), if it has the following two
properties:

(P1) ∀(u, v) ∈ EH , we have dH(u) + dH(v) ≤ β,

(P2) and ∀(u, v) ∈ EG \ EH , we have dH(u) + dH(v) ≥ (1− λ)β.

Remark. A maximal matching is an EDCS with parameters β = 2 and λ = 1
2 .

What follows is an important property of EDCS, i.e. that it approximates maximum matching. For the
proof, refer to the previous lecture.

Theorem 3. For any (possibly non-bipartite) graph G, and ε < 1
2 , let λ < ε

64 , and β ≥ 8λ−2 log 1
λ . Then

for any subgraph H ⊆ G that is an EDCS(G, β, λ), it holds that µ(H) ≥
(
2
3 − ε

)
µ(G).

We will now use this theorem to prove a lemma that is at the heart of the algorithm.

1

Definition 4. A graph H has bounded edge-degree β, if for all edges (u, v) ∈ EH it holds that dH(u) +
dH(v) ≤ β.

Definition 5. Given a graph G, and a subgraph H ⊆ G that has bounded edge-degree β, an edge (u, v) ∈
EG \ EH is (H,β, λ)-underfull if dH(u) + dH(v) < (1− λ)β.

Remark. An EDCS is a bounded edge-degree subgraph such that the rest of the graph has no underfull
edges.

Lemma 6. For any graph G, and ε < 1
2 , let λ < ε

128 , and β ≥ 16λ−2 log 1
λ . Let H ⊆ G be of bounded

edge-degree β, and let X be all the (H,β, λ)-underfull edges. Then µ(H ∪X) ≥
(
2
3 − ε

)
µ(G).

Proof. Let M be a maximum matching in G, and let XM = X ∩M , i.e. the underfull edges of the matching.
Note that H ∪ M is a subgraph of G, and it also includes the maximum matching M . So, it holds that
µ(H ∪M) = µ(G).

Claim 7. H ∪XM is an EDCS(H ∪M,β + 2, 2λ).

Taking the claim to be true, we can prove the lemma as follows:

µ(H ∪X) ≥ µ(H ∪XM) ≥
(
2

3
− ε

)
µ(H ∪M) =

(
2

3
− ε

)
µ(G)

Where the first inequality holds because H ∪X ⊇ H ∪XM . And the second inequality follows from Claim 7
together with Theorem 3.

Proof of Claim 7. Let H̃ = H ∪XM . We will simply check the two properties of EDCS for every edge. To
see that (P1) holds, note that by adding the edges of XM to H, the degree of any edge increases by at most
2, because XM is a matching. For any edge e ∈ EH , because of the (P1) property in H, we have:

dH̃(e) ≤ dH(e) + 2 ≤ β + 2,

and for any edge e ∈ XM , because it was (H,β, λ)-underfull, we have:

dH̃(e) ≤ dH(e) + 2 ≤ (1− λ)β + 2 ≤ β + 2

To see that (P2) holds, note that any edge in e ∈ (H ∪M)\ H̃ is not in X, i.e. it is not an (H,β, λ)-underfull
edge. So we have:

dH̃(e) ≥ dH(e) ≥ (1− λ)β ≥ (1− 2λ)(β + 2)

1.2 The Algorithm

Definition 8. Let e1, . . . , em be the edges of the stream. We use G>i to denote the subgraph of G consisting
of the edges {ei+1, . . . , em}, Glate to denote G>εm, and Gearly to denote G \Glate.

The algorithm is going to approximate µ(Glate). This is justified because we expect µ(Glate) to be about
(1− ε)µ(G) when µ(G) is large. The following statements will formalize this fact.

Claim 9. Without loss of generality, we can assume µ(G) ≥ 20 · log n · ε−2.

Proof. For any graph G, we have m ≤ 2nµ(G). To see this, fix a maximum matching in G. For every edge,
charge 1 to an adjacent matching edge. The total charge is m and every matching edge is charged at most
2n times (n times from each endpoint). Hence, m ≤ 2nµ(G). Using this fact, we can run a simple algorithm
that stores the whole graph and reports the maximum matching when m ≤ 20 · n log n · ε−2. And assume
µ(G) ≥ 20 · log n · ε−2 otherwise.

2

Lemma 10. Assuming µ(G) ≥ 20 · log n · ε−2, we have µ(Glate) ≥ (1− 2ε)µ(G) with high probability.

Proof. Fix a maximum matching M . Let Xi be the indicator variable of the i-th matching edge appearing
in Gearly. We have

E [Xi] = ε,

and

E

µ(G)∑
i=1

Xi

 = εµ(G).

As X1, . . . , Xµ(G) are negatively associated we can use the Chernoff bound (for an extensive treatment of
negative association see [Waj17]):

Pr

µ(G)∑
i=1

Xi > 2εµ

 ≤ exp

(
−1

3
µ(G)

)
≤ n−5

Now to approximate µ(Glate), the algorithm is going to operate in two phases. The first phase is going to
stop at some point i before εm and return an edge-degree bounded β subgraph H ⊆ Gearly. The second
phase is going to store all the (H,β, λ)-underfull edges in G>i, we call them X. The algorithm will at the
end return the maximum matching in H ∪X. The subgraph H must be chosen in such a manner that X
is small enough so that the algorithm can store it efficiently. We will describe how the first phase operates
after the following theorem.

Lemma 11. The two-phase algorithm described above achieves a
(
2
3 − 3ε

)
-approximation.

Proof. To see why this holds we simply apply Lemma 1.1 to H ∪X and H ∪G>i.

µ(H ∪X) ≥
(
2

3
− ε

)
µ(H ∪G>i) ≥

(
2

3
− ε

)
µ(Glate) ≥

(
2

3
− ε

)
(1− ε)µ(G) ≥

(
2

3
− 3ε

)
µ(G)

We will now describe the first phase in detail. The first phase processes the stream in sections of length
α = εm

nβ2+1 . At any point, it maintains a bounded edge-degree B subgraph H. When an edge arrives, it is

added to H if it is (H,β, λ)-underfull (where β and λ are set as in Lemma 1.1). If it is added then any edges
of degree larger than β are removed until no such edge remains, so that H remains of bounded edge-degree
β. The first phase terminates when H remains unchanged for a whole section. Intuitively, each section is
a random sample of the remaining part of the stream. When no underfull edges appear in this sample, we
expect there are not many underfull edges left.

What follows is a complete description of the algorithm.

Phase 1:
• Start with H = ∅
• Repeat until stopped:

• Process a section of α edges one by one.

• For edge (u, v) being processed, add (u, v) to H if dH(u) + dH(v) < (1− λ)β.

• If the edge is added, check for any edges (u′, v′) such that dH(u′) + dH(v′) > β and remove them.

• If no edges were added from the last section, terminate Phase 1.

Phase 2:
• Start with X = ∅

3

• Process the remaining edges one by one.

• For edge e being processed, add e to X if it is (H,β, λ)-underfull.

• In the end, return the maximum matching µ(H ∪X).

Now, as promised, it remains to show two things. First, that Phase 1 will terminate after processing at most
εm edges. Second, that X will have “few edges”.

Lemma 12. The first phase will process at most nβ2 + 1 sections, and hence at most (nβ2 + 1)α = εm
edges.

Proof. Consider the following potential function:

Φ(H) =

(
β − 1

2

)∑
u

dH(u)−
∑

(u,v)∈EH

dH(u) + dH(v)

It starts at zero value when H is empty. As proven in the previous lecture, it is upper-bounded by nβ2. And
it increases by at least 1 every time an underfull edge is added to H, or an edge with degree larger than β
is removed from H. Therefore, there will be at most nβ2 such changes made to H. As every section, except
the last one, makes at least one change to H, there will be at most nβ2 + 1 sections.

Lemma 13. There will be at most γ = 5 log(n)mα underfull edges encountered in the second phase, i.e.
|X| < γ, with high probability.

Proof. Note that this lemma is where we use the fact that the stream is in random order. Let Ek be the event
that the algorithm finishes after the k-th section, and there are more than γ underfull edges left. We will
bound the probability of each Ek and then use the union bound to prove the lemma. Let m′ = m− (k− 1)α
be the number of remaining edges at the beginning of section k. Let U be the number of underfull edges
still unprocessed at the beginning of section k. Conditioning on U , the probability of all the edges in section
k not being underfull is exactly:(

1− U

m′

)(
1− U

m′ − 1

)
· · ·

(
1− U

m′ − α+ 1

)
Each term in the product above is less than

(
1− γ

m

)
, so for any k we have

Pr (Ek) ≤
(
1− γ

m

)α

≤
(
1− 5 log n

α

)α

≤ exp(−5 log n) ≤ n−5

As the number of sections is smaller than n2, using the union bound we can conclude that |X| > γ with
probability at most n2 · n−5 = n−3

Considering that at any step in the first phase, H has at most O(nβ) edges, and there are at most γ edges
in X, the algorithm will use space O(nβ + γ) = O(n log npoly 1

ε) with high probability.

Putting together these remarks along with Lemma 11, we can conclude Theorem 1.

References

[Waj17] David Wajc. “Negative association: definition, properties, and applications”. In: Manuscript, avail-
able from https: // goo. gl/ j2ekqM (2017).

[Ber20] Aaron Bernstein. “Improved bounds for matching in random-order streams”. In: 47th International
Colloquium on Automata, Languages, and Programming. Vol. 168. LIPIcs. Leibniz Int. Proc. In-
form. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2020, Art. No. 12, 13.

4

https://goo.gl/j2ekqM

[AB21] Sepehr Assadi and Soheil Behnezhad. “Beating Two-Thirds For Random-Order Streaming Match-
ing”. In: 48th International Colloquium on Automata, Languages, and Programming, ICALP 2021,
July 12-16, 2021, Glasgow, Scotland (Virtual Conference). Ed. by Nikhil Bansal, Emanuela Merelli,
and James Worrell. Vol. 198. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021,
19:1–19:13. doi: 10.4230/LIPIcs.ICALP.2021.19. url: https://doi.org/10.4230/LIPIcs.
ICALP.2021.19.

5

https://doi.org/10.4230/LIPIcs.ICALP.2021.19
https://doi.org/10.4230/LIPIcs.ICALP.2021.19
https://doi.org/10.4230/LIPIcs.ICALP.2021.19

	1 A Random-Order Streaming Algorithm for Maximum Matching
	1.1 Preliminaries
	1.2 The Algorithm

