
CS 7880 Special Topics in TCS: Sublinear Algorithms (Fall’22) Northeastern University

Lecture 5&6: Lowerbounds for Sublinear Algorithms
September 23, 2022

Instructor: Soheil Behnezhad Scribe: Rose Silver

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

1 Graph Connectivity

Our goal for today is to prove the following theorem.

Theorem 1. Any (potentially randomized) algorithm for determining if a graph G is connected or not with
probability at least 2/3 requires Ω(n2) queries in the general query model.

Note that the input is deterministic. The randomization comes from the algorithm.

Also note that the 2/3 is arbitrary — if we have an algorithm that succeeds with probability 1/2 + Ω(1)
then we can repeat the algorithm multiple times and return whichever outcome it produces most often. By
a Chernoff bound, if we want a probability 1− ϵ of being correct, then Θ(log ϵ−1) repetitions suffices.

One corollary is that: we cannot distinguish between 1 vs 2 connected components. Thus, a better than
2-approximation for the number of connected components requires Ω(n2).

Thus even a better than 2-approximation also requires Ω(n2) queries.

Finally, note that this lower bound is unconditional. We are not relying on any assumptions such as P ̸= NP .

1.1 Proving lowerbounds for deterministic algorithms

Suppose we have a boolean function f . In the general query model, one way to think about any (deterministic)
algorithm for evaluating f is with a decision tree. For example, here would be the decision tree for evaluating
OR = x1 ∨ x2 ∨ x3 ∨ · · · ∨ xn:

1

Each node of the decision tree performs a query, and then the edges leaving that node determine where the
algorithm should go next based on that query.

Another example of a decision tree is the following, which computes the function f(x1x2x3) = (x1 ∧ x̄2) ∨
(x̄1 ∧ x3)

x1

x2

Return 1

0

Return 0

1

1

x3

Return 0

0

Return 1

1

0

This tree demonstrates two important things: a decision tree does not need to query all elements, and a
decision tree can have a depth (in this case 2) significantly smaller than the size of the input.

Definition 2 (Deterministic Query Complexity D(f)). The Deterministic Query Function D(f) of a
function f is the minimum worst-case number of queries made by the best algorithm for realizing f .

Equivalently, the best algorithm is the decision tree with the smallest depth. Thus, D(f) is the depth of the
best decision tree

It’s worth making a few remarks. Note that query complexity is not the same as time complexity (although
it is a lower bound). Also, we can define D(f) on f ’s that operate on restricted sets of inputs — for example,
f might distinguish between a binary string that has > 2/3n ones vs < 1/3n ones, in which case the tree
could return arbitrary values or fail to have a return path for inputs that have between 1/3n and 2/3n ones.

Some more examples:

• D(f) = 0 for constant functions, i.e. f(x) = 0 and f(x) = 1.

• D(f) = 1 for “Dictatorship functions”, i.e. {fi(x) = xi}i∈[n] and {fi(x) = 1− xi}i∈[n]

• D(f) ≤ n for all f , since there is always a trivial algorithm that queries the entire input.

Importantly, if we have a lower bound for the depth of a decision tree, we have a lower bound for (determin-
istic) query complexity. So what we really care about is decision-tree depth.

How do we prove lower bound? We consider a two-player game, with an Adversary (AD) player and an
Algorithm (ALG) player. At all points in time, AD has a set S ∈ {0, 1}n which initially equals all possible
inputs (or if f is partial, then S is the set of all possible inputs), and then shrinks over time. ALG’s job is to
perform queries and AD’s job is to determine the answer to each query. If ALG queries an entry i, then AD
decides to return some xi such that there exists possible y ∈ S where yi = xi. Once the query is answered,
all z ∈ S where zi ̸= xi are removed from S. The game ends when f(x) is the same for all x ∈ S.

A key observation is that, if both players play optimally, then the number of steps in the game will be the
query complexity D(f). More importantly for our purposes, if AD has an algorithm forcing the game to last
for k steps, then that algorithm must work even when ALG uses the optimal decision tree, and so we have
a lower bound of D(f) ≥ k. In other words, strategies for AD imply lower bounds for D(f).

As a warmup, let’s prove a few simple lower bounds.

Lemma 3. D(ORn) ≥ n.

2

Proof. Whenever an entry xi is queried, AD returns 0. If R is the set of entries queried so far, then S is the
set of all inputs that return 0 for those queries, and |S| = 2n−|R|. As long as |R| < n, then S contains both
an input x satisfying f(x) = 0 (i.e., the 0 input) and at least one input x satisfying f(x) = 1. Thus we have
a lower bound of n steps for the length of the game, implying that D(ORn) ≥ n.

Define Mn : {0, 1}n → {0, 1} to be the function that returns:

Mn(x) =

1 if x contains ≥ 2

3n ones

0 if x contains ≤ 1
3n ones

undefined otherwise.

Note that Mn is an example of a function that is defined only on a restricted set of inputs.

Lemma 4. D(Mn) >
2
3n.

Proof. AD’s strategy is as follows. For the first n/3 queries returns 0. For the second n/3 queries returns 1.
If all the remaining entries are 1’s, Mn(x) = 1. But if all the remaining entries are 0’s, Mn(x) = 0. Thus, at
least 2/3n+ 1 queries are needed for ALG, hence D(Mn) >

2
3n.

1.2 Proving lowerbounds for randomized algorithms

Now onto randomized complexity.

Definition 5. We say a randomized ALG, which takes as input a random tape r, decides f if

Pr[ALG(x) = f(x)] ≥ 2/3 ∀x.

For any fixed random tape r, we use ALGr to denote the deterministic algorithm obtained by instantiating
the random tape to be r.

Definition 6. We use R(f) to denote the worst-case queries of the best randomized algorithm deciding f

Remark. Note from the definition that an expected or even a high probability upper bound on the
query-complexity of a randomized algorithm is not enough. That is, if R(f) = K then there should be
a randomized algorithm ALG that on all inputs x and all random tapes r queries at most K entries of
the input.

Alternatively, A randomized algorithm can be viewed as a distribution over decision trees.

As an example of a case where randomized algorithms beat deterministic algorithms, note that R(Mn) = 1.
Indeed, if ALGr takes a random index i and returns xi, then it will be correct with probability at least 2/3
on any input.

It turns out that that we can analyze randomized query complexity R(f) with the same game as before
(between ALG and AD), but with an important twist: AD is no longer adaptive. That is, AD must decide
up front what it will return for every entry—or, to be more specific, AD must decide up front on a probability
distribution for x to be drawn from.

Rather than thinking about randomized query complexity directly in terms of this game, however, we will
instead introduce a principle known as Yao’s minimax principle that allows for us to think about randomized
algorithms in terms of probability distributions over deterministic algorithms. To do this, we first need two
definitions.

3

Definition 7 (Distributional Query Complexity). Let µ be a distribution over {0, 1}n. We say that a
deterministic algorithm decides f if

Pr
x∼µ

[ALG(x) = f(x)] ≥ 2/3.

Definition 8. Given a function f : {0, 1}n → {0, 1} and input distribution µ, define Dµ(f) to be the
worst-case number of queries of the best (fewest worst-case queries) deterministic algorithm deciding f on
distribution µ.

With these definitions in mind, we can now state Yao’s minimax principle.

Proposition 9 ([Yao77]). For any function f : {0, 1}n → {0, 1}

• Dµ(f) ≤ R(f) for every distribution µ.

• Dµ∗(f) = R(f) for some distribution µ∗.

The former bound is known as the ‘easy direction’ of Yao’s minimax principle and the latter is the ‘hard
direction’. For us, we only need to prove the easy direction, since it is the one that we need to obtain a
lower bound on the randomized query complexity R(r). Critically, what Yao’s minimax principle tells us is
that: to lower bound R(f), all we need to do is construct a distribution µ for which we can establish a lower
bound on Dµ(f).

Proof of the easy direction of Yao’s minimax Theorem. Fix f : {0, 1}n → {0, 1} and fix the best randomized
algorithm ALG deciding f . Let

z(x, r) = 1ALGr(x)=f(x)

i.e., z(x, r) is the indicator that the algorithm returns the right output for x with random tape r.

Fix any distribution µ. We can compute

Ex∼µ,r[z(x, r)] =
∑
x

∑
r

Pr[x, r] · z(x, r)

=
∑
x

∑
r

Pr[x] Pr[r] · z(x, r) (Since x and r are independent.)

=
∑
x

Pr[x]
∑
r

Pr[r]z(x, r)

=
∑
x

Pr[x]Er[z(x, r)]

≥
∑
x

Pr[x] · 2
3

(Since ALG must succeed with probability at least 2/3 on any input x.)

= 2/3.

Moreover, we have that

Ex∼µ,r[z(x, r)] =
∑
x

∑
r

Pr[x] Pr[r] · z(x, r)

=
∑
r

Pr[r]
∑
x

Pr[x]z(x, r)

=
∑
r

Pr[r] · Ex∼µ[z(x, r)]

≤ max
r

Ex∼µ[z(x, r)]. (Since
∑

r Pr[r] = 1.)

4

Note that in the last inequality above, Ex∼µ[z(x, r)] is the success probability of the deterministic algorithm
ALGr on x ∼ µ. Chaining our equations together, we get that there exists an r such that Ex∼µ[z(x, r)] ≥ 2/3.
Since Ex∼µ[z(x, r)] ≥ 2/3, the deterministic algorithm ALGr (i.e., the randomized algorithm using r as its
random tape) satisfies Pr[ALGr(x) = f(x)] ≥ 2/3 (here, the only randomness is from µ, since the random
tape has been fixed). This means that ALGr decides f on µ. It follows that Dµ(f) is at most the worst-case
query complexity of ALGr. But the worst-case query complexity of ALGr is at most the worst-case query
complexity of ALG, which is R(f). This establishes that, for any distribution µ, Dµ(f) ≤ R(f).

Theorem 10. R(ORn) ≥ n/3

Proof. We need to come up with an input distribution, and show that any deterministic algorithm over this
distribution has to have a large query complexity. We can then use Yao’s minimax theorem to lowerbound
the randomized query complexity R(ORn).

Consider the following distribution µ over the input: Pick i ∈ [n] uniformly at random, and pick b ∈ {0, 1}
independently from i and uniformly at random. For x = x1 . . . xn, let xi = b and xj = 0 for all j ̸= i.

Suppose for contradiction that there is a deterministic algorithm A that makes k < n/3 queries and guar-
antees

Pr
x∼µ

[A(x) = f(x)] ≥ 2/3. (1)

Suppose that A queries k indices and has not yet terminated (i.e. all of the indices returned 0) and define
i1, . . . , ik to be these indices. Define E to be the event that i /∈ {i1, . . . , ik}. It follows that

Pr[E] =
n− k

n

>
n− n/3

n

=
2

3
.

Since A is a deterministic algorithm, at this point it will return either 0 or 1. Thus, conditioned on E, A
makes a mistake with probability 1/2. Thus, the probability that A succeeds over our distribution is

Pr
x∼µ

[A(x) = f(x)] = 1− Pr
x∼µ

[A(x) ̸= f(x)]

< 1− Pr[E] · 1/2
< 1− 1/3

= 2/3

which is a contradiction to (1) above. Thus, any deterministic algorithm over µ must make at least n/3
queries, implying that the randomized query complexity R(ORn) is at least n/3.

1.3 Proving upperbounds for the randomized query complexity

Let’s now consider upperbounds for R(ORn). It is clear that R(ORn) ≤ n if we query all indices, but there’s
still a gap between the lowerbound n/3 and upperbound n. The following claim gives a better upper bound.

Claim 11. R(ORn) ≤ 2
3n

Proof. Consider a random algorithm that queries 2
3n indices at random without replacement and return

the OR of these. If ORn(x1, . . . , xn) = 1, then the algorithm succeeds with probability at least 2/3. If
ORn(x1, . . . , xn) = 0, then the algorithm succeeds with probability 1.

5

Next, we show that we can go further down and solve ORn with only n/2 queries.

Claim 12. Rn(ORn) ≤ 1
2n.

Proof. Let a randomized algorithm A query n/2 indices at random without replacement. If a 1 is seen, A
returns 1. Otherwise, A returns 1 with probability 1/3. Let E be the event that a 1 is found among the
queried indices. If ORn(x) = 1, the success probability of A is

Pr[A(x) = ORn(x)] ≥ Pr[E] + (1− Pr[E]) · 1
3

=
1

2
+

1

2
· 1
3

= 2/3.

If ORn(x) = 0, the random algorithm returns 0 with probability 2/3.

It turns out that n/2 is the correct answer. This can be proved by slightly modifying the input distribution
we used to prove our n/3 lower bound.

Exercise 13. Prove R(ORn) ≥ 1
2n

1.4 Proving Theorem 1

As a reminder, here is the theorem we want to prove:

Theorem 14. Any (potentially randomized) algorithm for determining if a graph G is connected or not
with probability at least 2/3 requires Ω(n2) queries in the general query model.

We first recall some definitions

Definition 15. The adjacency matrix model is a representation of a graph that, for any two vertices vi
and vj , can determine if these two vertices are connected.

Definition 16. The adjacency list model is a representation of a graph that, for any vertex vi and index
j, can output the j-th neighbor of vi.

Definition 17. The general query model is a representation of a graph that supports all adjacency matrix
model queries and all adjacency list model queries

For intuition on this theorem, imagine two situations: (1) G has two connected components and (2) G has
the same two connected components with the same number of edges as in (1) except there are two cross-edges
between the components (replacing an internal edge in each connected component). In order to determine if
this graph is connected, we would need to find one of these four possible edges, and that requires n2 queries.
More formally, we can prove the theorem by giving a reduction to the OR function. We let N =

(
n
2

)
and let

x = x1,2x1,3 . . . x1,Nx2,3 . . . xN−1,N . By Theorem 10, R(ORN (x)) ≥ N/3 = Ω(n2).

Given an x, we can construct a graph G as a function of x. We create n vertices v1, . . . , vn, n vertices
u1, . . . , un, and two vertices a and a′. We then connect vertex a to each vi, and connect vertex a′ to each ui.
Additionally, for any i, j such that i < j, if xi,j = 0, we add an edge between (vi, vj) and (ui, uj). If xi,j = 1,
add (vi, uj) and (vj , ui). Let E1 be the set of edges created from cases where xi,j = 0 and let E2 be the set
of edges created from cases where xi,j = 1. Then, the vertex set V and edge set E can be written as:

• V = {a, a′, v1, . . . , vn, u1, . . . , un}

6

• E = {(a, v1), . . . , (a, vn), (a′, u1), . . . , (a
′, un)} ∪ E1 ∪ E2.

Let’s formalize what adjacency list queries look like in this graph. For a vertex vi, and for all j ̸= i, we set
its j-th neighbor to be either vj if xi,j = 0 or uj if xi,j = 1. We set the i-th neighbor of vi to be a. We can
do the analogous neighboring for all vertices u.

We begin by observing that there is no information for any algorithm to gain by learning the degree of a
vertex, since in both cases all of the degrees are n.

Claim 18. For all vertices vi, it follows that deg(vi) = n. Similarly, for all vertices ui, it follows that
deg(ui) = n.

Proof. Every vertex vi is connected to a. Additionally, for every index i ̸= j, vi is connected to either vj or
uj . Thus, vi is connected to a total of n other vertices. The same is true for ui.

Next we observe that the two components {a, v1, . . . , vn} and {a′, u1, . . . , un} are connected to each other iff
ORN (x) = 1.

Claim 19. G(x) is connected iff ORN (x) = 1.

Finally, we observe that queries to G correspond to queries to x.

Claim 20. Any neighbor or pair query to G can be answered with one query to x.

Proof. Suppose we want to query the j-th neighbor of vi. If j = i, return a without any queries to x.
Otherwise, query xi,j and return vj if xi,j = 0 and uj otherwise. We can do the analogous process for
neighbor queries of vertices ui. Additionally, for pair queries (vi, uj), (vi, vj), and (ui, vj), we can just query
xi,j to get the answer. It is easy to see that all adjacency list and adjacency matrix queries on a and a′ are
trivial and do not require a query to x.

Proof of Theorem 1. By Claim 19 and Claim 20, we can give a reduction from a graph with 2n + 2 nodes
to ORN . Since R(ORN) ≥ N/3 = Ω(n2), then it takes Ω(n2) queries to determine if G is connected with
probability at least 2/3.

We note that while Theorem 1 proves the hardness of separating one connected component from two,
essentially the same lower bound can be proven for separating one connected component from C for any
constant C. We leave this as an exercise.

Exercise 21. Let C > 1 be any constant and suppose that we are given a graph that is promised to either
have C connected components or one connected component. Prove that determining the number of connected
components of the graph (possibly with a randomized algorithm) with success probability at least 2/3 requires
Ω(n2) queries in the general query model.

References

[Yao77] Andrew Chi-Chin Yao. “Probabilistic computations: Toward a unified measure of complexity”.
In: 18th Annual Symposium on Foundations of Computer Science (sfcs 1977). IEEE Computer
Society. 1977, pp. 222–227.

7

	1 Graph Connectivity
	1.1 Proving lowerbounds for deterministic algorithms
	1.2 Proving lowerbounds for randomized algorithms
	1.3 Proving upperbounds for the randomized query complexity
	1.4 Proving Theorem 1

