
CS 7880: Algorithms for Big Data (Fall’22) Northeastern University

Lecture 8
October 7, 2022

Instructor: Soheil Behnezhad Scribe: Omer Wasim

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

1 Sublinear Algorithms for Maximum Matching (Part I)

In the last lecture, we gave a sublinear time algorithm to determine whether a random vertex v is contained
in a maximal independent set constructed using a greedy procedure under a random permutation of the
vertex set V . In this lecture, we give an algorithm to (approximately) compute the size of a maximum
matching in Õ(∆3) time, by using the algorithm from the last lecture as a subroutine.

Our goal will be to prove the following theorem that appeared in a seminal paper by Yoshida, Yamamoto
and Ito [1].

Theorem 1. Let G = (V,E) be a graph of maximum degree ∆ and let µ(G) denote the size of the maximum
matching of G. For any ϵ > 0, there is an Õ(∆3) time algorithm to compute a (12 , ϵ)-approximation of µ(G)
w.h.p in the adjacency list model. More precisely, the output ũ of the algorithm satisfies,

1

2
µ(G)− ϵn ≤ µ̃ ≤ µ(G)

Remark. We note that the actual bound claimed in [1] is Õ(∆4), which is slightly slower than the

claimed bound of Õ(∆3) in Theorem 1. To achieve a bound of Õ(∆3) we incorporate one additional idea
due to [2] which is to sample vertices and test whether they belong to matching instead of sampling

edges. In the next lecture, we will discuss how we can further improve this to Õ(d̄) where d̄ is the
average degree of the graph.

1.1 Recap

Recall the local query process from last lecture that we used to determine whether a vertex v is contained
in the MIS I computed via the Greedy MIS algorithm under a permutation π of V :

IsInMIS(v,G, π)):

1. Let u1, u2, ..., ud be neighbors of v s.t. π(u1) < π(u2) < < π(ud) < π(v).

2. For i = 1 to d:

- If IsInMIS (ui, G, π) = True:

return False.

3. return True.

We defined Q(v, π) as the number of recursive calls to the IsInMIS procedure when calling IsInMIS(v,G, π),
and sketched a proof of the following theorem.

1

Theorem 2. [1] For a random vertex v and a random permutation π over V , the expected value of Q(v, π)
satisfies,

E
v,π

[Q(v, π)] ≤ 1 +
m

n

or equivalently, ∑
v

E
π
[Q(v, π)] ≤ n+m.

2 Matchings and Line Graphs

We begin by recalling the definition of a matching.

Definition 3. (Matching) A matching M ⊆ E of a graph G = (V,E) is a collection of vertex disjoint edges
of G, i.e. for any e = (u, v) ∈ M, u and v are not in the set ∪e′=(s,t)∈M\{e}{s, t}.

Definition 4. (Maximal Matching) A matching M is a maximal matching of graph G = (V,E) if M ̸⊂ M′

for any matching M′ of G.

Claim 5. The size of a maximal matching M is a 1
2 -approximation of the size of a maximum matching

µ(G), i.e. |M| ≥ 1
2µ(G).

Proof. Fix a maximum matching M′. For any edge e = (u, v) ∈ M′, at least one of u and v must be matched
in M (since otherwise M would fail to be maximal). Thus, the number of matched vertices in M is at least
µ(G), which implies that |M| ≥ 1

2µ(G).

We now define the line graph L(G) of a graph G = (V,E).

Definition 6. (Line Graph) Given a graph G = (V,E), such that E = {e1, e2, ..., e|E|}, the line graph
L(G) = (V ′, E′) of G is the graph on vertex set V ′ = v1, v2, ..., v|E| where each vertex vi corresponds to an
edge ei, and edge set E′ = {(vi, vj)|ei, ej share an endpoint in G}.

The key property of line graphs that we exploit in order to give a sublinear time algorithm for computing
the size of a maximum matching is that any MIS on the line graph of G corresponds to a maximal matching
of G.

Claim 7. For any graph G, any MIS I of L(G) corresponds to a maximal matching of G.

Proof. Since I is an independent set in L(G), then for any vi, vj ∈ I we have that ei, ej do not share an
endpoint in G. Thus, I corresponds to a matching in G. Indeed, it is a maximal matching since I is a
maximal independent set of L(G) (note that if I does not correspond to a maximal matching in G, then one
can add another edge-say ek to the matching. This would imply that vk can be added to I, contradicting
that I is a maximal independent set).

Remark. The big picture here is that to estimate the size of a maximum matching of G, we can
estimate the size of a maximal independent set in L(G) by going over the vertices of L(G) (or edges of
G) in some order. If IsInMIS(vi, L(G), π) returns True, we can add the corresponding edge ei to the
maximal matching M. By sampling random vertices and repeating this process, we get an estimate for
the size of the maximal matching which is sufficient for a (12 , ϵ)-approximation to µ(G).

2

3 The Algorithm

Before giving the full algorithm, we begin by considering an analogous algorithm to the greedy maximal
independent set adapted for computing the maximal matching. The greedy algorithm simply works as
follows: beginning with an empty matching M, if an edge e can be added to M, add e to M. If no edges
can be added to M, then by definition M is maximal.

We give the following procedure which utilizes the subroutine IsInMIS to determine whether a vertex v is
matched by the greedy maximal matching algorithm under an input permutation π on edges of G:

We revise the IsInMIS procedure to draw ranks of vertices (of the line graph) on the fly.
IsInMIS(v,G)):

1. Let u1, u2, ..., ud be neighbors of v. For all i ∈ [d], draw π(ud) ∈ [0, 1] uniformly in random (if π(ui)
has not been drawn before).

2. For i = 1 to d:

- If IsInMIS (ui, G, π) = True:

return False.

3. return True.

IsInMM(v,G, π)):

1. For all edges e incident to v:

- If IsInMIS (e, L(G)) = True:

return True.

2. return False.

Lemma 8. For a random permutation π over E and a random vertex v, the procedure IsInMM (v,G, π)
takes O(∆3) expected time.

Proof. Let e1, ..., e|N(v)| denote the set of edges incident to v. Then, the total running time of the calls to

the IsInMIS subroutine is bounded by 2∆
∑|N(v)|

i=1 Q(ei, π), where the multiplicative factor of 2∆ comes from
generating the ranks on the line graph for a single call to the IsInMIS procedure. However, note that to
bound each Q(ei, π), we cannot simply use the guaranteed of Theorem 2 since it holds for a randomly chosen

vertex. Instead we will bound the sum itself. To this end, let T (v, π) =
∑|N(v)|

i=1 Q(ei, π). Observe that,∑
v

E
π
[T (v, π)] = 2

∑
e∈E

E
π
[(Q(e, π)] ≤ 2m(1 + ∆) = O(m∆)

where the second to last inequality follows from Theorem 2 and the fact that the average degree of the line
graph is bounded by its maximum degree (which is 2∆ = O(∆)). Then, for a randomly chosen vertex v, we
have that

E
v,π

[T (v, π)] =
1

n

∑
v

E
π
[T (v, π)] = O(

m∆

n
) = O(∆2)

Thus, the total running time due to the calls to the IsInMIS subroutine bounded by O(∆3), completing the
proof.

As noted earlier, the idea will be to sample a sufficiently large number of vertices independently and uniformly,
and check whether the sampled vertices are matched in a greedy matching by calling the IsInMM procedure

3

on each sampled vertex. The fraction of matched vertices in our sample is then used as a proxy for estimating
the size of a maximal matching- which by Claim 5 is a 1

2 -approximation of the size of a maximum matching.
The size of the sample controls the final error in our approximation by a standard Chernoff bound.

Approximate-MM(G)):

1. Sample k = 12 lnn
ϵ2 vertices v1, ..., vk independently and uniformly.

2. For i = 1 to k:

- Let Xi=1 if IsInMM(vi, G) returns True.

3. Let X =
∑k

i=1 Xi and f = X
k .

4. return fn
2 .

Lemma 9. The output of algorithm Approximate-MM is within ϵn
2 of Eπ[|GMM(G, π)|], the expected size

of a greedy maximal matching under a random permutation π. More precisely,

fn

2
∈ (E

π
[|GMM(G, π)|]± ϵ

2
)

Proof. Note that E[Xi] = E[X1] =
2Eπ [|GMM(G,π)|

n . This is because the number of vertices incident to a
maximal matching are twice the size of the matching and the fact that eachXi is chosen uniformly at random.

From this, it follows that E[X] = 2k Eπ [|GMM(G,π)|
n . Applying the Chernoff bound (additive version), we get

that,

Pr[|X − E[X]| ≥
√

12E[X] lnn] ≤ 2exp(−12E[X] lnn

3E[X]
) =

2

n4
.

From this we have that fn ∈ n
k (E[X]±

√
12E[X] lnn). Plugging in the value of E[X] = Eπ[|GMM(G, π)|],

we get that fn ∈ (2Eπ[|GMM(G, π)|] ± n
√

12 lnn
k). Setting k = 12 lnn

ϵ2 , we get that with high probability,
fn
2 ∈ Eπ[|GMM(G, π)|]± ϵn

2 .

Note that our estimate fn
2 could possibly be greater than the size of the maximum matching by ϵn

2 violating

the guarantee of Theorem 1. The simple fix is to output µ̃ = fn
2 − ϵn

2 . This gives us an Õ(∆3) algorithm to
compute a (12 , ϵ)-approximation of µ(G) w.h.p.

References

[1] Yuichi Yoshida, Masaki Yamamoto, and Hiro Ito. An improved constant-time approximation algorithm
for maximum matchings. In Proceedings of the Forty-First Annual ACM Symposium on Theory of
Computing, STOC ’09, page 225–234, New York, NY, USA, 2009. Association for Computing Machinery.
1, 2

[2] Huy N. Nguyen and Krzysztof Onak. Constant-time approximation algorithms via local improvements.
In 49th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2008, October 25-28,
2008, Philadelphia, PA, USA, pages 327–336. IEEE Computer Society, 2008. 1

4

	1 Sublinear Algorithms for Maximum Matching (Part I)
	1.1 Recap

	2 Matchings and Line Graphs
	3 The Algorithm
	References

