
CS 7880: Algorithms for Big Data (Fall’22) Northeastern University

Lecture 9
October 11, 2022

Instructor: Soheil Behnezhad Scribe: Omer Wasim

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

1 Sublinear Algorithms for Maximum Matching (Part II)

In the last lecture, we gave a proof of the following theorem which appeared in a seminal paper by Yoshida,
Yamamoto and Ito [1].

Theorem 1. Let G = (V,E) be a graph of maximum degree ∆ and let µ(G) denote the size of the maximum
matching of G. For any ϵ > 0, there is an Õ(∆3) time algorithm to compute a (12 , ϵ)-approximation of µ(G)
w.h.p in the adjacency list model. More precisely, the output ũ of the algorithm satisfies,

1

2
µ(G)− ϵn ≤ µ̃ ≤ µ(G)

The high level idea was to use the IsInMIS subroutine on the line graph L(G) of G, and since a MIS on
L(G) corresponds to a maximal matching of G, we obtained an upper bound on the number of queries to
determine whether an edge in G was contained in a maximal matching or not. Then, to estimate the size of
the maximum matching, we sampled O(logn

ϵ2) vertices (in the line graph) and called the subroutine IsInMM to
determine whether a vertex is matched or not. By applying the Chernoff bound, we obtained concentration.

Remark. We also noted in the previous lecture that with a slightly more efficient implehmentation of
the oracles, the running time can be improved to Õ(∆2).

In this lecture, we will sketch the main ideas towards obtaining an Õ(d̄) running time where d̄ denotes the
average degree. This gives a truly sublinear algorithm for all graphs since always d̄ = O(m/n) ≪ m. The
near-tight analysis of the average query complexity for greedy maximal matching [1] which results in the
improved bound is due to Behnezhad [2].

2 An improved bound

We give the following procedures.

Vertex-Oracle(v, π):
Input: Vertex v and a permutation π over edges.
Output: Returns True if v is matched.

1. Let (v, u1), (v, u2), ..., (v, ud) be the edges incident to v such that π(v, u1) < π(v, u2) < ... < π(v, ud).

2. For i = 1 to d:

- If Edge-Oracle (ei, ui, π) = True:

return True.

3. return False.

1

Edge-Oracle(e, u, π):
Input: Edge e, endpoint u of e and a permutation π over edges.
Output: Returns True if e is in the matching.

If Edge-Oracle(e, u, π) has already been computed before, return the value. Else:

1. Let e1 = (u,w1), e2 = (u,w2), ..., ed = (u,wd) be the edges incident to u such that π(e1) < π(e2) <
... < π(ed).

2. For i = 1 to d:

- If Edge-Oracle (ei, wi, π) = True:

return False.

3. return True.

Exercise. Prove the correctness of Vertex-Oracle.

The rest of the lecture will be devoted towards giving a proof sketch of the following theorem.

Theorem 2. [2] For a random vertex v and a random permutation π, Vertex-Oracle(v, π) calls the
procedure Edge-Oracle O(d̄ log n) times.

We note that the theorem immediately yields the following corollary.

Corollary 3. For any ϵ > 0, there is an O(∆d̄ log n) time algorithm to compute a (12 , ϵ)-approximation of
µ(G) w.h.p in the adjacency list model.

With a careful implementation of the oracles, we can improve the running time to Õ(d̄). However, we only
give a sketch of Theorem 2 below.

We define a query path as follows.

Definition 4. A query path P at any given point in time during the execution of Vertex-Oracle(v, π) is
a path in the graph G corresponding to the stack of recursive calls to the procedure Edge-Oracle.

Lemma 5. For a random permutation π, the longest query path is of length O(log n) with probability at least
1− 1

n2 .

Remark. A proof of Lemma 5 is given in [2] via a reduction to the parallel depth of randomized greedy
MIS and a nice result of Fischer and Noever [3] which bounds it by O(log n). There is a much simpler
proof, yielding a bound of O(log2 n) (see Homework 1). Using the latter bound only increases the
claimed running time by an extra log n factor to O(d̄ log2 n).

For an edge e = (u, v), we let P (e, π) denote the number of times that Edge-Oracle(e, ·, ·) is called if
Vertex-Oracle(w, π) is called for all w ∈ V .

Claim 6. For every edge e, it holds that Eπ[P (e, π)] = O(log n).

Before giving a proof sketch for Claim 6, we give a proof of Theorem 2 via Claim 6.

Proof of Theorem 2. We letQ(v, π) denote the total number of calls to Edge-Oracle when we call Vertex-Oracle(v, π).

2

Note that this is exactly what we want to bound for the statement of Theorem 2. We have that,∑
v∈V

E
π
[Q(v, π)] =

∑
e∈E

E
π
[P (e, π)]

=
∑
e∈E

O(log n)

= O(m log n)

where the first inequality follows from the definition of P (e, π) and the second inequality follows from Claim
6. This implies that the number of times Vertex-Oracle(v, π) calls Edge-Oracle for a random vertex v and
random permutation π is,

E
v,π

[Q(v, π)] =
1

n

∑
v∈V

E
π
[Q(v, π)] = O(

m

n
log n) = O(d̄ log n)

which completes the proof.

2.1 Proof Sketch of Claim 6

The idea is similar to before: we blame P (e, π) other permutations. Such permutations π′ differ only on a
subset of edges-in particular edges on the query path. Take a query path P = (w,, u, v) which ends in
edge (u, v). Intuitively, we want to bound the number of queries into e if Vertex-Oracle(x, π) was called
on all x ∈ V . We let BL(π, P) be the blamed permutation obtained by rotating the ranks on the path P by
1 (See Figures 1-3). In particular, the rest of the permutation is unchanged. We will illustrate the idea with
an example (which can be formalized similarly to the previous lecture).

w

x

y

z

u

v

s

t

100

90

80

70

60

82

81

Figure 1: The path P shown in red.

w

x

y

z

u

v

s

t

90

80

81

70

60

100

82

Figure 2: The path P ′ shown in
blue.

w

x

y

z

u

v

s

t

90

80

70

60

100

81

82

Figure 3: The blame permuta-
tion BL(π, P) showing ranks ro-
tated by 1.

Figure 1 and Figure 2 show two different query paths P and P ′ ending in the same edge e = (u, v). The
claim is that if BL(π, P) = BL(π′, P ′), then one of P and P ′ is a subpath of the other. We prove this by
contradiction. First note that by definition of the blame permutation, π and π′ are the same for every edge
not shown in the figures-each such edge is assigned a rank from 1, ..., 79. Let e′ = (t, y), e′′ = (x, y) and

3

f = (y, z) be the edges. Since e′′ queries the edge f which has rank 80 in π (and 81 in π′) implies that e′′

has no edge incident to it with rank less than 80 in the greedy maximal matching GMM(π). Since π and
π′ are the same on ranks 1, ..., 79 this means that e′′ in π′ has no edge incident to it with rank less than 80;
this implies that e′′ ∈ GMM(π′). However, if this is the case then the edge e′ in π′ would first query e′′ and
immediately terminate. This means that P ′ is not a valid query path, which is a contradiction.

Moving on, let Pm denote the set of all permutations on m elements. Let πL denote the set of ‘likely’
permutations where all query paths in the graph have length O(log n) and πU = Pm\πL denote the set of
all other ‘unlikely’ permutations. Consider the bipartite (blame) graph Gn on vertex sets L and R, where
|L| = |R| = |Pm| and each vertex of L and R corresponds to a permutation of π. The edge set of Gn consists
of all edges of the form (ℓ, r) where ℓ ∈ L, and r ∈ R, such that r is blamed by ℓ. Now for any vertex
ℓ ∈ L∩πL its degree is at most O(log n) since for likely permutations, the query path length is only O(log n)
by definition, and thus only O(log n) paths ending in (u, v) (corresponding to permutations in R) can be
blamed. If we show that for a random vertex selected from L has degree O(log n) then we are effectively
done since this average degree corresponds to the quantity Eπ[P (e, π)].

We now observe that P (e, π) is bounded by O(n2). For any vertex w, Vertex-Oracle calls Edge-Oracle

with w as the second argument at most O(n) times. For any edge e. Edge-Oracle(e, π) is called at most
once by edges incident to it since calls to Edge-Oracle are cached when Vertex-Oracle is called for any
vertex w. Thus, calling Vertex-Oracle on all n vertices results in at most O(n2) calls to Edge-Oracle(e, π).

Let us now bound the average degree of any vertex π ∈ L. Note that the number of edges incident to
πL are bounded by O(m! log n) since there are only m! total vertices in L and each vertex in πL has
degree at most O(log n) as noted earlier. Next, note that the total number of edges incident to all ℓ ∈ πU

is given by, |πU |n2 = m!
n2 = O(m!) where the first inequality follows from Lemma 5 and the n2 term

comes from our observation. For a random permutation, π ∈ Pn, the average degree in graph Gn is then
O(m! logn)

m! = O(log n).

References

[1] Yuichi Yoshida, Masaki Yamamoto, and Hiro Ito. An improved constant-time approximation algorithm
for maximum matchings. In Proceedings of the Forty-First Annual ACM Symposium on Theory of
Computing, STOC ’09, page 225–234, New York, NY, USA, 2009. Association for Computing Machinery.
1

[2] Soheil Behnezhad. Time-optimal sublinear algorithms for matching and vertex cover. In 2021 IEEE 62nd
Annual Symposium on Foundations of Computer Science (FOCS), pages 873–884, 2022. 1, 2

[3] Manuela Fischer and Andreas Noever. Tight analysis of parallel randomized greedy MIS. In Proceedings
of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New Orleans,
LA, USA, January 7-10, 2018, pages 2152–2160, 2018. 2

4

	1 Sublinear Algorithms for Maximum Matching (Part II)
	2 An improved bound
	2.1 Proof Sketch of Claim 6

	References

