```
CS 7880: Algorithms for Big Data (Fall'22)
    Lecture 9
    October 11, }202
Instructor: Soheil Behnezhad
    Scribe: Omer Wasim
```

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

## 1 Sublinear Algorithms for Maximum Matching (Part II)

In the last lecture, we gave a proof of the following theorem which appeared in a seminal paper by Yoshida, Yamamoto and Ito [1].

Theorem 1. Let $G=(V, E)$ be a graph of maximum degree $\Delta$ and let $\mu(G)$ denote the size of the maximum matching of $G$. For any $\epsilon>0$, there is an $\tilde{O}\left(\Delta^{3}\right)$ time algorithm to compute a $\left(\frac{1}{2}, \epsilon\right)$-approximation of $\mu(G)$ w.h.p in the adjacency list model. More precisely, the output $\tilde{u}$ of the algorithm satisfies,

$$
\frac{1}{2} \mu(G)-\epsilon n \leq \tilde{\mu} \leq \mu(G)
$$

The high level idea was to use the IsInMIS subroutine on the line graph $L(G)$ of $G$, and since a MIS on $L(G)$ corresponds to a maximal matching of $G$, we obtained an upper bound on the number of queries to determine whether an edge in $G$ was contained in a maximal matching or not. Then, to estimate the size of the maximum matching, we sampled $O\left(\frac{\log n}{\epsilon^{2}}\right)$ vertices (in the line graph) and called the subroutine IsInMM to determine whether a vertex is matched or not. By applying the Chernoff bound, we obtained concentration.

Remark. We also noted in the previous lecture that with a slightly more efficient implehmentation of the oracles, the running time can be improved to $\tilde{O}\left(\Delta^{2}\right)$.

In this lecture, we will sketch the main ideas towards obtaining an $\tilde{O}(\bar{d})$ running time where $\bar{d}$ denotes the average degree. This gives a truly sublinear algorithm for all graphs since always $\bar{d}=O(m / n) \ll m$. The near-tight analysis of the average query complexity for greedy maximal matching [1] which results in the improved bound is due to Behnezhad [2].

## 2 An improved bound

We give the following procedures.

```
Vertex-Oracle( }v,\pi)
Input: Vertex v}\mathrm{ and a permutation }\pi\mathrm{ over edges.
Output: Returns True if }v\mathrm{ is matched.
```

1. Let $\left(v, u_{1}\right),\left(v, u_{2}\right), \ldots,\left(v, u_{d}\right)$ be the edges incident to $v$ such that $\pi\left(v, u_{1}\right)<\pi\left(v, u_{2}\right)<\ldots<\pi\left(v, u_{d}\right)$.
2. For $i=1$ to $d$ :

- If Edge-Oracle $\left(e_{i}, u_{i}, \pi\right)=$ True:
return True.

3. return False.
```
Edge-Oracle(e,u,\pi):
```

Input: Edge $e$, endpoint $u$ of $e$ and a permutation $\pi$ over edges.
Output: Returns True if $e$ is in the matching.
If Edge-Oracle $(e, u, \pi)$ has already been computed before, return the value. Else:

1. Let $e_{1}=\left(u, w_{1}\right), e_{2}=\left(u, w_{2}\right), \ldots, e_{d}=\left(u, w_{d}\right)$ be the edges incident to $u$ such that $\pi\left(e_{1}\right)<\pi\left(e_{2}\right)<$ $\ldots<\pi\left(e_{d}\right)$.
2. For $i=1$ to $d$ :

- If Edge-Oracle $\left(e_{i}, w_{i}, \pi\right)=$ True:
return False.

3. return True.

Exercise. Prove the correctness of Vertex-Oracle.
The rest of the lecture will be devoted towards giving a proof sketch of the following theorem.
Theorem 2. [2] For a random vertex $v$ and a random permutation $\pi$, Vertex-Oracle $(v, \pi)$ calls the procedure Edge-Oracle $O(\bar{d} \log n)$ times.

We note that the theorem immediately yields the following corollary.
Corollary 3. For any $\epsilon>0$, there is an $O(\Delta \bar{d} \log n)$ time algorithm to compute $a\left(\frac{1}{2}, \epsilon\right)$-approximation of $\mu(G)$ w.h.p in the adjacency list model.

With a careful implementation of the oracles, we can improve the running time to $\tilde{O}(\bar{d})$. However, we only give a sketch of Theorem 2 below.

We define a query path as follows.
Definition 4. A query path $P$ at any given point in time during the execution of Vertex-Oracle $(v, \pi)$ is a path in the graph $G$ corresponding to the stack of recursive calls to the procedure Edge-Oracle.

Lemma 5. For a random permutation $\pi$, the longest query path is of length $O(\log n)$ with probability at least $1-\frac{1}{n^{2}}$.

Remark. A proof of Lemma 5 is given in [2] via a reduction to the parallel depth of randomized greedy MIS and a nice result of Fischer and Noever [3] which bounds it by $O(\log n)$. There is a much simpler proof, yielding a bound of $O\left(\log ^{2} n\right)$ (see Homework 1). Using the latter bound only increases the claimed running time by an extra $\log n$ factor to $O\left(\bar{d} \log ^{2} n\right)$.

For an edge $e=(u, v)$, we let $P(e, \pi)$ denote the number of times that Edge-Oracle $(e, \cdot, \cdot)$ is called if $\operatorname{Vertex}-\operatorname{Oracle}(w, \pi)$ is called for all $w \in V$.

Claim 6. For every edge $e$, it holds that $\mathbb{E}_{\pi}[P(e, \pi)]=O(\log n)$.

Before giving a proof sketch for Claim 6, we give a proof of Theorem 2 via Claim 6.

Proof of Theorem 2. We let $Q(v, \pi)$ denote the total number of calls to Edge-Oracle when we call Vertex-Oracle $(v, \pi)$.

Note that this is exactly what we want to bound for the statement of Theorem 2. We have that,

$$
\begin{aligned}
\sum_{v \in V} \underset{\pi}{\mathbb{E}}[Q(v, \pi)] & =\sum_{e \in E} \underset{\pi}{\mathbb{E}}[P(e, \pi)] \\
& =\sum_{e \in E} O(\log n) \\
& =O(m \log n)
\end{aligned}
$$

where the first inequality follows from the definition of $P(e, \pi)$ and the second inequality follows from Claim 6. This implies that the number of times Vertex-Oracle $(v, \pi)$ calls Edge-Oracle for a random vertex $v$ and random permutation $\pi$ is,

$$
\underset{v, \pi}{\mathbb{E}}[Q(v, \pi)]=\frac{1}{n} \sum_{v \in V} \underset{\pi}{\mathbb{E}}[Q(v, \pi)]=O\left(\frac{m}{n} \log n\right)=O(\bar{d} \log n)
$$

which completes the proof.

### 2.1 Proof Sketch of Claim 6

The idea is similar to before: we blame $P(e, \pi)$ other permutations. Such permutations $\pi^{\prime}$ differ only on a subset of edges-in particular edges on the query path. Take a query path $P=(w, \ldots, u, v)$ which ends in edge $(u, v)$. Intuitively, we want to bound the number of queries into $e$ if $\operatorname{Vertex}-\operatorname{Oracle}(x, \pi)$ was called on all $x \in V$. We let $B L(\pi, P)$ be the blamed permutation obtained by rotating the ranks on the path $P$ by 1 (See Figures 1-3). In particular, the rest of the permutation is unchanged. We will illustrate the idea with an example (which can be formalized similarly to the previous lecture).


Figure 1: The path $P$ shown in red.


Figure 2: The path $P^{\prime}$ shown in blue.


Figure 3: The blame permutation $B L(\pi, P)$ showing ranks rotated by 1 .

Figure 1 and Figure 2 show two different query paths $P$ and $P^{\prime}$ ending in the same edge $e=(u, v)$. The claim is that if $B L(\pi, P)=B L\left(\pi^{\prime}, P^{\prime}\right)$, then one of $P$ and $P^{\prime}$ is a subpath of the other. We prove this by contradiction. First note that by definition of the blame permutation, $\pi$ and $\pi^{\prime}$ are the same for every edge not shown in the figures-each such edge is assigned a rank from $1, \ldots, 79$. Let $e^{\prime}=(t, y), e^{\prime \prime}=(x, y)$ and
$f=(y, z)$ be the edges. Since $e^{\prime \prime}$ queries the edge $f$ which has rank 80 in $\pi$ (and 81 in $\pi^{\prime}$ ) implies that $e^{\prime \prime}$ has no edge incident to it with rank less than 80 in the greedy maximal matching $G M M(\pi)$. Since $\pi$ and $\pi^{\prime}$ are the same on ranks $1, \ldots, 79$ this means that $e^{\prime \prime}$ in $\pi^{\prime}$ has no edge incident to it with rank less than 80 ; this implies that $e^{\prime \prime} \in G M M\left(\pi^{\prime}\right)$. However, if this is the case then the edge $e^{\prime}$ in $\pi^{\prime}$ would first query $e^{\prime \prime}$ and immediately terminate. This means that $P^{\prime}$ is not a valid query path, which is a contradiction.

Moving on, let $\mathbb{P}_{m}$ denote the set of all permutations on $m$ elements. Let $\pi_{L}$ denote the set of 'likely' permutations where all query paths in the graph have length $O(\log n)$ and $\pi_{U}=\mathbb{P}_{m} \backslash \pi_{L}$ denote the set of all other 'unlikely' permutations. Consider the bipartite (blame) graph $G_{n}$ on vertex sets $L$ and $R$, where $|L|=|R|=\left|\mathbb{P}_{m}\right|$ and each vertex of $L$ and $R$ corresponds to a permutation of $\pi$. The edge set of $G_{n}$ consists of all edges of the form $(\ell, r)$ where $\ell \in L$, and $r \in R$, such that $r$ is blamed by $\ell$. Now for any vertex $\ell \in L \cap \pi_{L}$ its degree is at most $O(\log n)$ since for likely permutations, the query path length is only $O(\log n)$ by definition, and thus only $O(\log n)$ paths ending in $(u, v)$ (corresponding to permutations in $R$ ) can be blamed. If we show that for a random vertex selected from $L$ has degree $O(\log n)$ then we are effectively done since this average degree corresponds to the quantity $\mathbb{E}_{\pi}[P(e, \pi)]$.
We now observe that $P(e, \pi)$ is bounded by $O\left(n^{2}\right)$. For any vertex $w$, Vertex-Oracle calls Edge-Oracle with $w$ as the second argument at most $O(n)$ times. For any edge $e$. Edge-Oracle $(e, \pi)$ is called at most once by edges incident to it since calls to Edge-Oracle are cached when Vertex-Oracle is called for any vertex $w$. Thus, calling Vertex-Oracle on all $n$ vertices results in at most $O\left(n^{2}\right)$ calls to Edge-Oracle $(e, \pi)$.

Let us now bound the average degree of any vertex $\pi \in L$. Note that the number of edges incident to $\pi_{L}$ are bounded by $O(m!\log n)$ since there are only $m$ ! total vertices in $L$ and each vertex in $\pi_{L}$ has degree at most $O(\log n)$ as noted earlier. Next, note that the total number of edges incident to all $\ell \in \pi_{U}$ is given by, $\left|\pi_{U}\right| n^{2}=\frac{m!}{n^{2}}=O(m!)$ where the first inequality follows from Lemma 5 and the $n^{2}$ term comes from our observation. For a random permutation, $\pi \in \mathbb{P}_{n}$, the average degree in graph $G_{n}$ is then $\frac{O(m!\log n)}{m!}=O(\log n)$.

## References

[1] Yuichi Yoshida, Masaki Yamamoto, and Hiro Ito. An improved constant-time approximation algorithm for maximum matchings. In Proceedings of the Forty-First Annual ACM Symposium on Theory of Computing, STOC '09, page 225-234, New York, NY, USA, 2009. Association for Computing Machinery. 1
[2] Soheil Behnezhad. Time-optimal sublinear algorithms for matching and vertex cover. In 2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS), pages 873-884, 2022. 1, 2
[3] Manuela Fischer and Andreas Noever. Tight analysis of parallel randomized greedy MIS. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA, USA, January 7-10, 2018, pages 2152-2160, 2018. 2

