CS 7880:	Algorithms	for Big	Data ((Fall'22))
00 10000	11160110111110	IOI DIS	Data		,

Northeastern University

Lecture 9

October 11, 2022

Instructor: Soheil Behnezhad

Scribe: Omer Wasim

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

1 Sublinear Algorithms for Maximum Matching (Part II)

In the last lecture, we gave a proof of the following theorem which appeared in a seminal paper by Yoshida, Yamamoto and Ito [1].

Theorem 1. Let G = (V, E) be a graph of maximum degree Δ and let $\mu(G)$ denote the size of the maximum matching of G. For any $\epsilon > 0$, there is an $\tilde{O}(\Delta^3)$ time algorithm to compute a $(\frac{1}{2}, \epsilon)$ -approximation of $\mu(G)$ w.h.p in the adjacency list model. More precisely, the output \tilde{u} of the algorithm satisfies,

$$\frac{1}{2}\mu(G) - \epsilon n \le \tilde{\mu} \le \mu(G)$$

The high level idea was to use the IsInMIS subroutine on the line graph L(G) of G, and since a MIS on L(G) corresponds to a maximal matching of G, we obtained an upper bound on the number of queries to determine whether an edge in G was contained in a maximal matching or not. Then, to estimate the size of the maximum matching, we sampled $O(\frac{\log n}{\epsilon^2})$ vertices (in the line graph) and called the subroutine IsInMM to determine whether a vertex is matched or not. By applying the Chernoff bound, we obtained concentration.

Remark. We also noted in the previous lecture that with a slightly more efficient implementation of the oracles, the running time can be improved to $\tilde{O}(\Delta^2)$.

In this lecture, we will sketch the main ideas towards obtaining an $\tilde{O}(\bar{d})$ running time where \bar{d} denotes the average degree. This gives a truly sublinear algorithm for all graphs since always $\bar{d} = O(m/n) \ll m$. The near-tight analysis of the average query complexity for greedy maximal matching [1] which results in the improved bound is due to Behnezhad [2].

2 An improved bound

We give the following procedures.

Vertex-Oracle (v, π) : Input: Vertex v and a permutation π over edges. Output: Returns True if v is matched. 1. Let $(v, u_1), (v, u_2), ..., (v, u_d)$ be the edges incident to v such that $\pi(v, u_1) < \pi(v, u_2) < ... < \pi(v, u_d)$. 2. For i = 1 to d: - If Edge-Oracle $(e_i, u_i, \pi) =$ True: return True. 3. return False. Edge-Oracle(e, u, π):
Input: Edge e, endpoint u of e and a permutation π over edges.
Output: Returns True if e is in the matching.
If Edge-Oracle(e, u, π) has already been computed before, return the value. Else:

Let e₁ = (u, w₁), e₂ = (u, w₂), ..., e_d = (u, w_d) be the edges incident to u such that π(e₁) < π(e₂) < ... < π(e_d).

2. For i = 1 to d:

If Edge-Oracle (e_i, w_i, π) = True:
return False.

3. return True.

Exercise. Prove the correctness of Vertex-Oracle.

The rest of the lecture will be devoted towards giving a proof sketch of the following theorem.

Theorem 2. [2] For a random vertex v and a random permutation π , Vertex-Oracle (v,π) calls the procedure Edge-Oracle $O(\overline{d} \log n)$ times.

We note that the theorem immediately yields the following corollary.

Corollary 3. For any $\epsilon > 0$, there is an $O(\Delta \overline{d} \log n)$ time algorithm to compute a $(\frac{1}{2}, \epsilon)$ -approximation of $\mu(G)$ w.h.p in the adjacency list model.

With a careful implementation of the oracles, we can improve the running time to $\tilde{O}(\bar{d})$. However, we only give a sketch of Theorem 2 below.

We define a query path as follows.

Definition 4. A query path P at any given point in time during the execution of $Vertex-Oracle(v,\pi)$ is a path in the graph G corresponding to the stack of recursive calls to the procedure Edge-Oracle.

Lemma 5. For a random permutation π , the longest query path is of length $O(\log n)$ with probability at least $1 - \frac{1}{n^2}$.

Remark. A proof of Lemma 5 is given in [2] via a reduction to the parallel depth of randomized greedy MIS and a nice result of Fischer and Noever [3] which bounds it by $O(\log n)$. There is a much simpler proof, yielding a bound of $O(\log^2 n)$ (see Homework 1). Using the latter bound only increases the claimed running time by an extra $\log n$ factor to $O(\overline{d}\log^2 n)$.

For an edge e = (u, v), we let $P(e, \pi)$ denote the number of times that $Edge-Oracle(e, \cdot, \cdot)$ is called if $Vertex-Oracle(w, \pi)$ is called for all $w \in V$.

Claim 6. For every edge e, it holds that $\mathbb{E}_{\pi}[P(e,\pi)] = O(\log n)$.

Before giving a proof sketch for Claim 6, we give a proof of Theorem 2 via Claim 6.

Proof of Theorem 2. We let $Q(v, \pi)$ denote the *total* number of calls to Edge-Oracle when we call Vertex-Oracle (v, π) .

Note that this is exactly what we want to bound for the statement of Theorem 2. We have that,

$$\sum_{v \in V} \mathbb{E}_{\pi}[Q(v, \pi)] = \sum_{e \in E} \mathbb{E}_{\pi}[P(e, \pi)]$$
$$= \sum_{e \in E} O(\log n)$$
$$= O(m \log n)$$

where the first inequality follows from the definition of $P(e, \pi)$ and the second inequality follows from Claim 6. This implies that the number of times Vertex-Oracle (v, π) calls Edge-Oracle for a random vertex v and random permutation π is,

$$\mathbb{E}_{v,\pi}[Q(v,\pi)] = \frac{1}{n} \sum_{v \in V} \mathbb{E}_{\pi}[Q(v,\pi)] = O(\frac{m}{n}\log n) = O(\bar{d}\log n)$$

which completes the proof.

2.1 Proof Sketch of Claim 6

The idea is similar to before: we blame $P(e, \pi)$ other permutations. Such permutations π' differ only on a subset of edges-in particular edges on the query path. Take a query path P = (w, ..., u, v) which ends in edge (u, v). Intuitively, we want to bound the number of queries *into* e if $Vertex-Oracle<math>(x, \pi)$ was called on all $x \in V$. We let $BL(\pi, P)$ be the blamed permutation obtained by rotating the ranks on the path P by 1 (See Figures 1-3). In particular, the rest of the permutation is unchanged. We will illustrate the idea with an example (which can be formalized similarly to the previous lecture).

Figure 1: The path P shown in red.

Figure 2: The path P' shown in Figure 3: The blame permutation $BL(\pi, P)$ showing ranks rotated by 1.

Figure 1 and Figure 2 show two different query paths P and P' ending in the same edge e = (u, v). The claim is that if $BL(\pi, P) = BL(\pi', P')$, then one of P and P' is a subpath of the other. We prove this by contradiction. First note that by definition of the blame permutation, π and π' are the same for every edge not shown in the figures-each such edge is assigned a rank from 1, ..., 79. Let e' = (t, y), e'' = (x, y) and

f = (y, z) be the edges. Since e'' queries the edge f which has rank 80 in π (and 81 in π') implies that e'' has no edge incident to it with rank less than 80 in the greedy maximal matching $GMM(\pi)$. Since π and π' are the same on ranks 1, ..., 79 this means that e'' in π' has no edge incident to it with rank less than 80; this implies that $e'' \in GMM(\pi')$. However, if this is the case then the edge e' in π' would first query e'' and immediately terminate. This means that P' is not a valid query path, which is a contradiction.

Moving on, let \mathbb{P}_m denote the set of all permutations on m elements. Let π_L denote the set of 'likely' permutations where all query paths in the graph have length $O(\log n)$ and $\pi_U = \mathbb{P}_m \setminus \pi_L$ denote the set of all other 'unlikely' permutations. Consider the bipartite (blame) graph G_n on vertex sets L and R, where $|L| = |R| = |\mathbb{P}_m|$ and each vertex of L and R corresponds to a permutation of π . The edge set of G_n consists of all edges of the form (ℓ, r) where $\ell \in L$, and $r \in R$, such that r is blamed by ℓ . Now for any vertex $\ell \in L \cap \pi_L$ its degree is at most $O(\log n)$ since for likely permutations, the query path length is only $O(\log n)$ by definition, and thus only $O(\log n)$ paths ending in (u, v) (corresponding to permutations in R) can be blamed. If we show that for a random vertex selected from L has degree $O(\log n)$ then we are effectively done since this average degree corresponds to the quantity $\mathbb{E}_{\pi}[P(e,\pi)]$.

We now observe that $P(e,\pi)$ is bounded by $O(n^2)$. For any vertex w, Vertex-Oracle calls Edge-Oracle with w as the second argument at most O(n) times. For any edge e. Edge-Oracle (e,π) is called at most once by edges incident to it since calls to Edge-Oracle are cached when Vertex-Oracle is called for any vertex w. Thus, calling Vertex-Oracle on all n vertices results in at most $O(n^2)$ calls to Edge-Oracle (e,π) .

Let us now bound the average degree of any vertex $\pi \in L$. Note that the number of edges incident to π_L are bounded by $O(m! \log n)$ since there are only m! total vertices in L and each vertex in π_L has degree at most $O(\log n)$ as noted earlier. Next, note that the total number of edges incident to all $\ell \in \pi_U$ is given by, $|\pi_U|n^2 = \frac{m!}{n^2} = O(m!)$ where the first inequality follows from Lemma 5 and the n^2 term comes from our observation. For a random permutation, $\pi \in \mathbb{P}_n$, the average degree in graph G_n is then $\frac{O(m! \log n)}{m!} = O(\log n)$.

References

- Yuichi Yoshida, Masaki Yamamoto, and Hiro Ito. An improved constant-time approximation algorithm for maximum matchings. In *Proceedings of the Forty-First Annual ACM Symposium on Theory of Computing*, STOC '09, page 225–234, New York, NY, USA, 2009. Association for Computing Machinery. 1
- [2] Soheil Behnezhad. Time-optimal sublinear algorithms for matching and vertex cover. In 2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS), pages 873–884, 2022. 1, 2
- [3] Manuela Fischer and Andreas Noever. Tight analysis of parallel randomized greedy MIS. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA, USA, January 7-10, 2018, pages 2152–2160, 2018. 2