
Brief Announcement: Graph Matching in Massive Datasets

Soheil Behnezhad*

University of Maryland
Mahsa Derakhshan*

University of Maryland
Hossein Esfandiari†

University of Maryland

Elif Tan‡

Ankara University
Hadi Yami*

University of Maryland

ABSTRACT

In this paper we consider the maximum matching problem in
large bipartite graphs. We present a new algorithm that finds
the maximum matching in a few iterations of a novel edge
sampling technique. This algorithm can be implemented in
big data settings such as streaming setting and MapReduce
setting, where each iteration of the algorithm maps to one
pass over the stream, or one MapReduce round of compu-
tation, respectively. We prove that our algorithm provides
a 1− 𝜀 approximate solution to the maximum matching in
1/𝜀 rounds which improves the prior work in terms of the
number of passes/rounds. Our algorithm works even better
when we run it on real datasets and finds the exact maximum
matching in 4 to 8 rounds while sampling only about %1 of
the edges.

1 INTRODUCTION

The best offline algorithm known for the maximum matching
problem runs in 𝑂(𝑚

√
𝑛) time and 𝑂(𝑚) space [13] for a

graph 𝐺 with 𝑛 vertices and 𝑚 edges. For massive graphs, this
is quite inefficient, especially when the input graph is dense
(i.e., 𝑚 ≫ 𝑛). To overcome this problem, there are several
recent attempts to design efficient algorithms in streaming
and/or distributed settings (e.g. MapReduce)[2–4, 7, 9, 11,
12]. All of these algorithms give approximate solutions to
the maximum matching, i.e., for some 0 < 𝛼 ≤ 1 they
report a solution which is at least 𝛼 fraction of the maximum
matching.

In streaming setting, a graphs is given as a sequence of
edges. The algorithm is allowed to take a few passes over the
input (usually constant or logarithmic), and has access to a

*Supported in part by NSF CAREER award CCF-1053605,
NSF BIGDATA grant IIS-1546108, NSF AF:Medium grant
CCF-1161365, DARPA GRAPHS/AFOSR grant FA9550-
12-1-0423, and another DARPA SIMPLEX grant. Emails:
{soheil,mahsaa,hadiyami}@cs.umd.edu.
†Supported in part by Google PhD Fellowship in Market Algorithms.
Email: hossein@cs.umd.edu.
‡Supported by TUBITAK-2219 International Postdoctoral Research
Scholarship Programme. Email: etan@ankara.edu.tr.

Permission to make digital or hard copies of part or all of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SPAA ’17, July 24-26, 2017, Washington DC, USA

© 2017 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-4593-4/17/07.
https://doi.org/10.1145/3087556.3087601

local memory significantly smaller than the input graph (i.e.
𝑜(𝑛2)).

McGregor [12] provided a 1− 𝜀 approximation algorithm
for unweighted general graphs and a 0.5− 𝜀 approximation
algorithm for weighted graphs in constant (exponential in

1/𝜀) passes over the input, using �̃�(𝑛) space. For bipar-
tite unweighted graphs, Ahn and Guha [1] improved the
number of passes to 𝑂(1/𝜀2 log log 1/𝜀). On a related note,
Ahn and Guha [2] later presented a MapReduce algorithm
that achieves a 1− 𝜀 approximation in 𝑂(𝑝/𝜀) rounds, using

𝑂(𝑛1+1/𝑝) local space.
There are also some recent attempts towards estimating

the size of the maximum matching in these settings [3, 4, 7, 9]
and some attempts to find the maximum matching when its
size is small [4–6].

In this paper, we present an algorithm that finds the max-
imum matching in a few iterations of a novel edge sampling
technique. Our algorithm iteratively samples the edges of the
input graph based on the minimum vertex cover of the cur-
rently sampled edges. In fact, each iteration of the algorithm
maps to one pass over the stream in the streaming setting,
or one Map-Reduce round of computation. We prove that
after 1/𝜀 iterations our algorithm gives a 1−𝜀 approximation,
improving the result of Ahn and Guha [1] in terms of the
number of passes.

The simplicity of our algorithm makes it implementable in
common big data settings such as streaming and Map-Reduce
models. Our experiments indicate that on real world datasets,
it works much better than our theoretical guarantees. More
precisely, it finds the exact maximum matching in 4 to 8 of
rounds, while sampling only about %1 of edges in total.

2 NOTATIONS

The input, denoted by 𝒢, is an undirected bipartite graph
with 𝑛 vertices. Throughout this paper, 𝒱(𝒢) denotes the
vertex set of 𝒢 and ℰ(𝒢) denotes the edge set of 𝒢. For any
arbitrary subgraph 𝐻 of 𝒢, 𝒢 ∖𝐻 is a subgraph of 𝒢 where
𝒱(𝒢 ∖ 𝐻) = 𝒱(𝒢) − 𝒱(𝐻) and an edge {𝑢, 𝑣} ∈ ℰ(𝒢) is in
ℰ(𝒢 ∖ 𝐻) if and only if 𝑢 and 𝑣 are not in 𝒱(𝐻). We may
also abuse this notation and use 𝒢 ∖ 𝑉 when 𝑉 is a subset of
𝒱(𝒢) and not a sub-graph of 𝒢. Moreover, we denote the set
of edges in the maximum matching of a graph 𝐺 byℳ𝐺.

3 ALGORITHM

In this section we explain our algorithm to find a maximum
matching in bipartite graphs (Figure 1). The input graph
𝒢 and a real number 𝛼 are given. Our algorithm consists of

https://doi.org/10.1145/3087556.3087601

1: procedure MaximumMatchingBySampling(𝒢, 𝛼)
2: 𝒮0, 𝒞0 ← ∅
3: 𝑖← 1
4: while |ℰ(𝒢 ∖ 𝒞𝑖−1)| > 0 do
5: 𝑈 ← 𝑛𝛼 edges sampled u.a.r from 𝒢 ∖ 𝒞𝑖−1

6: 𝒮𝑖 ← 𝒮𝑖−1 ∪ 𝑈
7: 𝒞𝑖 ← vertices in minimum vertex cover of 𝒮𝑖
8: 𝑖← 𝑖+ 1
9: end while

10: return maximum matching of 𝒮𝑖−1

11: end procedure

Figure 1: Maximum Matching via Sampling

several rounds, and in each round, we add some edges to
our sample until there are no more valid edges to add. More
precisely, 𝒮𝑖 denotes our sample at round 𝑖 and 𝒞𝑖 denotes a
minimum vertex cover of 𝒮𝑖. Initially 𝒮0 and 𝒞0 are empty
sets. For any 𝑖 > 0, 𝒮𝑖 is the union of 𝒮𝑖−1 and a sample
of at most 𝑛𝛼 edges chosen uniformly at random from the
candidate set ℰ(𝒢 ∖ 𝒞𝑖−1). This means in the first round the
candidate edges that we sample from is the edge set of 𝒢,
and 𝒮1 is a set of 𝑛𝛼 edges that are chosen uniformly at
random from ℰ(𝒢). We continue this until round 𝑟 where
there are no edges in the candidate set ℰ(𝒢 ∖𝒞𝑟). This implies
that all the edges in 𝒢 are covered by 𝒞𝑟. Note that in a
bipartite graph the size of the minimum vertex cover is equal
to the size of the maximum matching by Kőnig’s theorem
[10]. Hence we have |ℳ𝒮𝑟 | = |𝒞𝑟|. On the other hand 𝒞𝑟
is also a vertex cover of 𝒢 since it covers every edge in 𝒢,
therefore the size of the maximum matching of 𝒢 is at most
|𝒞𝑟|. This means |ℳ𝒢 | = |ℳ𝒮𝑟 | and it suffices to return the
maximum matching of our last sample when there are no
edges in the candidate set.

4 ANALYSIS

In this section we analyze Algorithm 1 and show that by
setting 𝛼 =

√
𝑛, our algorithm gives a (1− 𝜀)-approximation

for the maximum matching problem in streaming setting,

using 𝑂(𝑛
1.5

𝜀
) space and 𝑂(1

𝜀
) passes.

We first prove that every edge that is not covered by the
vertex cover in the 𝑖-th round is added to the sample in the
next round, with high probability. We define the notion of
critical induced subgraphs as follows:

Definition 4.1 (Critical Induced Subgraph). An induced
subgraph 𝒦 of 𝒢 is critical, if |ℰ(𝒦)| ≥ 𝑛1.5.

We show that the probability that Algorithm 1 does not
sample any edge from an arbitrary critical induced subgraph
in the first round is too small that even the union bound over
all critical induced subgraphs is still very low. This means
that with high probability any critical induced subgraph has
at least one edge in 𝒮1.

Lemma 4.2. With probability at least 1− (2
𝑒
)𝑛, any critical

induced subgraph of 𝒢 has at least one edge in 𝒮1, if 𝛼 =
√
𝑛.

Proof. Let 𝒦 be an arbitrary critical induced subgraph
of 𝒢. For any arbitrary edge 𝑤 of 𝒢, let P̄(𝑤,𝒮1) denote
the probability that 𝑤 is not in 𝒮1. We also use P̄(𝒦,𝒮1) to
denote the probability that none of the edges of 𝒦 are in 𝒮1.
By fixing a random edge 𝑥 of 𝒦 we first give an upper bound
for P̄(𝑥,𝒮1) to further show P̄(𝒦,𝒮1) is very small.

Note that we sample 𝑛
√
𝑛 edges of ℰ(𝒢) uniformly at

random in the first step, thus P̄(𝑥,𝒮1) = 1− 𝑛
√
𝑛

|ℰ(𝒢)| . This

means P̄(𝑥,𝒮1) has the highest value when |ℰ(𝒢)| is large,
but the number of the edges in a graph with 𝑛 vertices could
not be more than 𝑛2. Therefore

P̄(𝑥,𝒮1) < 1− 𝑛
√
𝑛

𝑛2
= 1− 1√

𝑛
. (1)

We take advantage of the fact that all the edges in 𝒮1
are chosen uniformly at random to give an upper bound
for P̄(𝒦,𝒮1) using P̄(𝑥,𝒮1). Boolean random variables in
{𝑋1, . . . , 𝑋𝑛} are negatively correlated if:

Pr[
⋀︁
𝑖∈𝑆

𝑋𝑖 = 1] ≤
∏︁
𝑖∈𝑆

Pr[𝑋𝑖] ∀𝑆 ⊆ {1, . . . , 𝑛} (2)

For any edge 𝑤 of 𝒢, we define the boolean random variable
X̄(𝑤,𝒮1) to be 1 if 𝑤 is not in 𝒮1 and 0 otherwise (note
that P̄(𝑤,𝒮1) = Pr[X̄(𝑤,𝒮1)]). Since the edges in 𝒮1 are
chosen uniformly at random, the boolean random variables
in 𝒳𝒢 = {X̄(𝑦,𝒮1) | 𝑦 ∈ ℰ(𝒢)} are negatively correlated
[8], therefore the probability that none of the edges of 𝒦 are

in 𝒮1, is not more than (1− 𝑛−0.5)|ℰ(𝒦|), more formally let
𝒳𝒦 = {X̄(𝑦,𝒮1) | 𝑦 ∈ ℰ(𝒦)}, since 𝒳𝒦 ⊆ 𝒳𝒢 by (2):

Pr[
⋀︁

𝑟∈𝒳𝒦

𝑟 = 1] ≤
∏︁

𝑟∈𝒳𝒦

Pr[𝑟] = P̄(𝑥,𝒮1)|ℰ(𝒦)|

and by (1):

P̄(𝑥,𝒮1)|ℰ(𝒦)| ≤ (1− 1√
𝑛
)|ℰ(𝒦)|

therefore:

Pr[
⋀︁

𝑟∈𝒳𝒦

𝑟 = 1] = P̄(𝒦,𝒮1) ≤ (1− 1√
𝑛
)|ℰ(𝒦)|. (3)

Note that 𝒦 is a critical induced subgarph of 𝒢 and by

definition |ℰ(𝒦)| ≥ 𝑛
√
𝑛, thus P̄(𝒦,𝒮1) ≤ (1 − 𝑛−0.5)𝑛

√
𝑛

and by using the fact that (1− 1
𝑥
)𝑥 < 1

𝑒
for any real number

𝑥 ≥ 1, we get:

P̄(𝒦,𝒮1) ≤
(︀
1− 1√

𝑛

)︀𝑛√
𝑛
=

(︁(︀
1− 1√

𝑛

)︀√𝑛
)︁𝑛

< (
1

𝑒
)𝑛.

On the other hand every subset of 𝒱(𝒢) is equivalent to an
induced subgraph of 𝒢. Therefore the total number of critical
induced subgraphs of 𝒢 does not exceed 2𝑛. This means the
probability that there is at least one critical induced subgraph
of 𝒢 that has no edge in 𝒮1, which is equal to the union bound
of P̄(𝒦,𝒮1) for all possible critical induced subgraphs, is not
more than 2𝑛 × (1

𝑒
)𝑛 = (2

𝑒
)𝑛. □

Using Lemma 4.2, we give an 𝑛1.5 upper bound for the
size of ℰ(𝒢/𝒞𝑖) with high probability. This means every edge
in 𝒢/𝒞𝑖 could be added to the sample in the next round.

Lemma 4.3. With probability at least 1− (2
𝑒
)𝑛 every edge

in 𝒢/𝒞𝑖−1 is in 𝒮𝑖, for any 𝑖 > 1, If 𝛼 =
√
𝑛.

Proof. Note that since 𝛼 =
√
𝑛, in Line 6 of Algorithm 1,

𝑛
√
𝑛 edges of 𝒢/𝒞𝑖−1 are added to the sample. Therefore if

the number of edges in 𝒢/𝒞𝑖−1 is less than 𝑛
√
𝑛 (which we

prove with high probability is the case), 𝒮𝑖 will contain them
all as desired.

To prove |ℰ(𝒢/𝒞𝑖−1)| ≤ 𝑛
√
𝑛 with high probability, recall

that by Lemma 4.2, all critical induced subgraphs of 𝒢 have
at least one edge in 𝒮1 with probability 1− (2

𝑒
)𝑛. We show if

|ℰ(𝒢/𝒞𝑖−1)| > 𝑛
√
𝑛 there exists a critical induced subgraph

of 𝒢 that does not have any edge in 𝒮1, and therefore it
happens only with probability (2

𝑒
)𝑛. To do so, we first prove

if an edge 𝑒 is in 𝒮1, then it cannot be in 𝒢/𝒞𝑖−1. To see
this, note that 𝑒 has to be in 𝒮𝑖−1 since the sample set at
each round is a super set of the sample set at the previous
round (Line 6 of Algorithm 1). This means the vertex cover
𝒞𝑖−1 of 𝒮𝑖−1, contains at least one of the vertices of 𝑒 to
cover it, which implies at least one of the vertices of 𝑒 is
not in 𝒢/𝒞𝑖−1, and therefore 𝑒 ̸∈ ℰ(𝒢/𝒞𝑖−1). Note that if the
number of edges in 𝒢/𝒞𝑖−1 is more than 𝑛

√
𝑛, then 𝒢/𝒞𝑖−1

is a critical induced subgraph of 𝒢 by Definition 4.1 which
does not have any edge in 𝒮1 (or otherwise that edge could
not have appeared in 𝒢/𝒞𝑖−1). By Lemma 4.2 this happens
only with probability (2

𝑒
)𝑛.

We proved with probability at least 1− (2
𝑒
)𝑛, the number

of edges in candidate set 𝒢/𝒞𝑖−1 is too small that we can
sample them all. □

Theorem 4.5 states that after 1
𝜀
rounds, the maximum

matching of the sample is a (1 − 𝜀)-approximation for the
maximum matching of 𝒢 with high probability. To prove this,
we first show in Lemma 4.4, that at least |ℳ𝒢 |−|ℳ𝒮𝑖 | edges
ofℳ𝒢 are in 𝒮𝑖+1−𝒮𝑖 with high probability. Then using this
lemma we show that before reaching the (1-𝜀)-approximation,
at each round, the size of the maximum matching of the
sample increases by at least 𝜀|ℳ𝒢 |. Using this observation
we give an upper bound for the number of rounds before
reaching the approximation.

Lemma 4.4. If |ℳ𝒮𝑖 | < |ℳ𝒢 |, and we set 𝛼 =
√
𝑛, with

probability at least 1− (2
𝑒
)𝑛, at least |ℳ𝒢 | − |ℳ𝒮𝑖 | edges of

ℳ𝒢 are in 𝒮𝑖+1 − 𝒮𝑖.

Proof. Let 𝑘𝑖 denote |ℳ𝒢 | − |ℳ𝒮𝑖 |. Note that |𝒞𝑖| =
|ℳ𝒮𝑖 | since any subgraph of a bipartite graph is also a
bipartite graph and the size of the minimum vertex cover
of any bipartite graph is equal to the size of its maximum
matching. Therefore |ℳ𝒢 | − |𝒞𝑖| = 𝑘𝑖. This means 𝒞𝑖 does
not cover at least 𝑘𝑖 edges ofℳ𝒢 , since no two edges ofℳ𝒢
could be covered with the same vertex. By Lemma 4.3 every
edge in 𝒢/𝒞𝑖 is in 𝒮𝑖+1 with probability at least 1 − (2

𝑒
)𝑛,

therefore at least 𝑘𝑖 edges of ℳ𝒢 are added to 𝒮𝑖+1 with
probability at least 1− (2

𝑒
)𝑛. □

Theorem 4.5. ℳ𝒮𝑟 is a (1-𝜀)-approximation for ℳ𝒢

with probability at least 1− (2
𝑒
)
𝑛
𝜀 , if 𝑟 ≥ 1

𝜀
and 𝛼 =

√
𝑛.

Dataset Nodes Edges Maximum Matching

Wiki-Vote 14230 13595753 7115
Facebook 8078 5608736 4039

Enron-Email 73384 60599542 36692
Twitter 58316 195413186 60810
Slashdot 154720 189796532 77360

Table 1: Properties of the datasets

Proof. Let 𝑘𝑖 denote |ℳ𝒢 | − |ℳ𝒮𝑖 |. Note that in Line 6
of Algorithm 1 every edge in 𝒮𝑖 is in 𝒮𝑖+1, thus |ℳ𝒮𝑖 | ≤
|ℳ𝒮𝑖+1 |. This implies that the size of the matching of the

sample is increasing at each round. Therefore for any 𝑚′ ≤
|ℳ𝒢 | there exists a round 𝑖 such that 𝑚′ ≤ℳ𝒮𝑡 .

Using Lemma 4.4 we find a lower bound for the size of
the maximum matching in round 𝑟 based on 𝑘𝑟. Lemma
4.4 states that in round 𝑖 of this algorithm with probability
at least 1 − (2

𝑒
)𝑛, 𝒮𝑖+1 includes at least 𝑘𝑖 new edges from

ℳ𝒢 . Since for each round 𝑗 where 𝑗 ≤ 𝑖 we have 𝑘𝑗 ≥ 𝑘𝑖,
in each round before 𝑟 with probability at least 1 − (2

𝑒
)𝑛,

at least 𝑘𝑟 new edges from ℳ𝒢 are added to the sampled
graph. Therefore the total number of edges formℳ𝒢 that are
guaranteed to be in the 𝒮𝑟 with probability at least 1− (2

𝑒
)
𝑛
𝜀

is greater than (𝑟 − 1)× 𝜀|ℳ𝒢 |. Considering these, we have
the equation below which shows after round 𝑟 the minimum
number ofℳ𝒢 edges the sampled graph has, is smaller than
the number of its maximum matching size.

(𝑟 − 1)× 𝜀|ℳ𝒢 | < (1− 𝜀)|ℳ𝒢 |
This equation states that the number of maximum rounds
for having a (1− 𝜀)-approximation with probability at least

1− (2
𝑒
)
𝑛
𝜀 is 1

𝜀
. Therefore we have a (1-𝜀)-approximation for

ℳ𝒢 with probability at least 1− (2
𝑒
)
𝑛
𝜀 . □

5 EMPIRICAL RESULTS

In this section we describe our experiments on several datasets.

5.1 Datasets

We present our empirical results on the 2-hop neighbor-
hood graph of Twitter, Facebook, Slashdot, Wiki-Vote,
and Enron-Email datasets from SNAP1, a publicly avail-
able dataset collection. Note that these networks are not
necessarily bipartite. To make them bipartite, we create two
partitions by duplicating the original graph’s vertex set and
adding an edge from a vertex 𝑣 in a partition to vertex 𝑢
in the other partition if there is an edge from 𝑣 to 𝑢 in the
original graph.

Table 1 shows some of the relevant properties of our
datasets.

5.2 Experiments

In order to practically evaluate Algorithm 1, we run it on
our datasets for different values of 𝛼 in the range 1-10 to find
a maximum matching. We also run it on different induced

1http://snap.stanford.edu/data/

𝛼 1 2 5 10 20

Wiki-Vote 8 6 5 4 3
Facebook 4 3 2 3 2
Enron-Email 7 6 4 4 3
Twitter 8 7 5 4 4
Slashdot 8 6 4 4 4

Table 2: The number of rounds until we find the
maximum matching for different values of 𝛼.

𝛼 1 2 5 10 20

Wiki-Vote 0.7% 0.8% 1.6% 2.5% 2.7%
Facebook 0.6% 0.7% 1.4% 1.6% 2.9%
Enron-Email 0.6% 0.8% 1.3% 2.2% 2.7%
Twitter 0.3% 0.5% 0.7% 1.3% 1.7%
Slashdot 0.6% 0.7% 1.1% 1.7% 2.2%

Table 3: The ratio of sampled edges until we find the
maximum matching for different values of 𝛼.

subgraphs of the datasets to compare the results for different
number of vertices. To find an induced subgraph of our
datasets, we first randomly choose a subset of vertices in the
original network and construct the bipartite graph for those
users (this means for any selected user we have two vertices).

Some of the important implications of our empirical results
are as follows:

Different number of vertices. as the number of vertices of
the induced subgraph increases, the ratio of edges sampled
by the algorithm to find a maximum matching decreases
accordingly. This property of our algorithm is specially very
important for solving large input graphs, which is indeed the
main focus of our approach. This property could be observed
in Figure 2 (a).

Different values of 𝛼. For very large values of 𝛼, Algo-
rithm 1 clearly samples all the edges in the first round. How-
ever, by decreasing 𝛼, although the expected number of
rounds needed to find the maximum matching increases, the
ratio of edges that we sample decreases. This could be ob-
served in Table 2 and Table 3. Note that even in the worst
case (where 𝛼 = 1) the number of rounds does not exceed 8
on any dataset. The above-mentioned property means one
can pick a desirable 𝛼 to balance the number of rounds versus
the ratio of sampled edges.

Approximation factor in different rounds. Note that after
each round, the approximation factor gets better and better
until when we find the maximum matching. According to Fig-
ure 2 (b), even when 𝛼 = 1, we can get a 0.8-approximation
for all datasets by at most 4 rounds and it takes at most 7
rounds to find the optimal maximum matching.

20 40 60 80 100

0
2

4
6

8
10

Vertices #

Sa
m

pl
ed

 E
dg

es
 (

%
)

Facebook
Enron-Email
Wiki-Vote
Twitter
Slashdot

(a)

1 2 3 4 5 6 7 8

0.
2

0.
4

0.
6

0.
8

1.
0

Round #

A
pp

ro
xi

m
at

io
n

Fa
ct

or

Wiki-Vote
Facebook
Enron Email Network
Twitter
Slashdot

(b)

Figure 2

REFERENCES
[1] K. J. Ahn and S. Guha. Linear programming in the semi-streaming

model with application to the maximum matching problem. Inf.
Comput., 222:59–79, 2013.

[2] K. J. Ahn and S. Guha. Access to data and number of iterations:
Dual primal algorithms for maximum matching under resource
constraints. In Proceedings of the 27th ACM on Symposium
on Parallelism in Algorithms and Architectures, pages 202–211.
ACM, 2015.

[3] M. Bury and C. Schwiegelshohn. Sublinear estimation of
weighted matchings in dynamic data streams. arXiv preprint
arXiv:1505.02019, 2015.

[4] R. Chitnis, G. Cormode, H. Esfandiari, M. Hajiaghayi, A. Mc-
Gregor, M. Monemizadeh, and S. Vorotnikova. Kernelization via
sampling with applications to dynamic graph streams. arXiv
preprint arXiv:1505.01731, 2015.

[5] R. Chitnis, G. Cormode, H. Esfandiari, M. Hajiaghayi, and
M. Monemizadeh. Brief announcement: New streaming algorithms
for parameterized maximal matching & beyond. In Proceedings
of the 27th ACM on Symposium on Parallelism in Algorithms
and Architectures, pages 56–58. ACM, 2015.

[6] R. Chitnis, G. Cormode, M. Hajiaghayi, and M. Monemizadeh.
Parameterized streaming: maximal matching and vertex cover. In
Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 1234–1251. SIAM, 2015.

[7] H. Esfandiari, M. T. Hajiaghayi, V. Liaghat, M. Monemizadeh,
and K. Onak. Streaming algorithms for estimating the matching
size in planar graphs and beyond. In Proceedings of the Twenty-
Sixth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 1217–1233. SIAM, 2015.

[8] K. Joag-Dev and F. Proschan. Negative association of random
variables with applications. The Annals of Statistics, pages
286–295, 1983.

[9] M. Kapralov, S. Khanna, and M. Sudan. Approximating matching
size from random streams. In Proceedings of the Twenty-Fifth
Annual ACM-SIAM Symposium on Discrete Algorithms, pages
734–751. SIAM, 2014.

[10] D. Konig. Gráfok és mátrixok. matematikai és fizikai lapok, 38:
116–119, 1931.

[11] S. Lattanzi, B. Moseley, S. Suri, and S. Vassilvitskii. Filtering: a
method for solving graph problems in mapreduce. In Proceedings
of the twenty-third annual ACM symposium on Parallelism in
algorithms and architectures, pages 85–94. ACM, 2011.

[12] A. McGregor. Finding graph matchings in data streams. In Ap-
proximation, Randomization and Combinatorial Optimization.
Algorithms and Techniques, pages 170–181. Springer, 2005.

[13] S. Micali and V. V. Vazirani. An 𝑜(
√︀

|𝑣||𝑒|) algoithm for finding
maximum matching in general graphs. In Foundations of Com-
puter Science, 1980., 21st Annual Symposium on, pages 17–27.
IEEE, 1980.

	Abstract
	1 Introduction
	2 Notations
	3 Algorithm
	4 Analysis
	5 Empirical Results
	5.1 Datasets
	5.2 Experiments

	References

